remove scikit-image
This commit is contained in:
		
							parent
							
								
									95245425eb
								
							
						
					
					
						commit
						0d89c37ef1
					
				| 
						 | 
				
			
			@ -2,8 +2,6 @@ import os
 | 
			
		|||
import time
 | 
			
		||||
 | 
			
		||||
import cv2
 | 
			
		||||
import skimage
 | 
			
		||||
from skimage import color, feature
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -170,15 +168,19 @@ def load_image(img, mask, device, sigma256=3.0):
 | 
			
		|||
    # https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny
 | 
			
		||||
    # low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtype’s max.
 | 
			
		||||
    # high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtype’s max.
 | 
			
		||||
    gray_256 = color.rgb2gray(img_256)
 | 
			
		||||
    edge_256 = feature.canny(gray_256, sigma=sigma256, mask=None).astype(float)
 | 
			
		||||
    # cv2.imwrite("skimage_gray.jpg", (_gray_256*255).astype(np.uint8))
 | 
			
		||||
    # cv2.imwrite("skimage_edge.jpg", (_edge_256*255).astype(np.uint8))
 | 
			
		||||
 | 
			
		||||
    # gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
 | 
			
		||||
    # gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(3,3), sigmaX=sigma256, sigmaY=sigma256)
 | 
			
		||||
    # edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2))
 | 
			
		||||
    # cv2.imwrite("edge.jpg", edge_256)
 | 
			
		||||
    try:
 | 
			
		||||
        import skimage
 | 
			
		||||
        gray_256 = skimage.color.rgb2gray(img_256)
 | 
			
		||||
        edge_256 = skimage.feature.canny(gray_256, sigma=3.0, mask=None).astype(float)
 | 
			
		||||
        # cv2.imwrite("skimage_gray.jpg", (gray_256*255).astype(np.uint8))
 | 
			
		||||
        # cv2.imwrite("skimage_edge.jpg", (edge_256*255).astype(np.uint8))
 | 
			
		||||
    except:
 | 
			
		||||
        gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
 | 
			
		||||
        gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(7, 7), sigmaX=sigma256, sigmaY=sigma256)
 | 
			
		||||
        edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2))
 | 
			
		||||
 | 
			
		||||
    # cv2.imwrite("opencv_edge.jpg", edge_256)
 | 
			
		||||
 | 
			
		||||
    # line
 | 
			
		||||
    img_512 = resize(img, 512, 512)
 | 
			
		||||
| 
						 | 
				
			
			@ -381,10 +383,14 @@ class ZITS(InpaintModel):
 | 
			
		|||
 | 
			
		||||
        for line, score in zip(lines_masked, scores_masked):
 | 
			
		||||
            if score > mask_th:
 | 
			
		||||
                rr, cc, value = skimage.draw.line_aa(
 | 
			
		||||
                    *to_int(line[0:2]), *to_int(line[2:4])
 | 
			
		||||
                )
 | 
			
		||||
                lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
 | 
			
		||||
                try:
 | 
			
		||||
                    import skimage
 | 
			
		||||
                    rr, cc, value = skimage.draw.line_aa(
 | 
			
		||||
                        *to_int(line[0:2]), *to_int(line[2:4])
 | 
			
		||||
                    )
 | 
			
		||||
                    lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
 | 
			
		||||
                except:
 | 
			
		||||
                    cv2.line(lmap, to_int(line[0:2][::-1]), to_int(line[2:4][::-1]), (1, 1, 1), 1, cv2.LINE_AA)
 | 
			
		||||
 | 
			
		||||
        lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8)
 | 
			
		||||
        lines_tensor.append(to_tensor(lmap).unsqueeze(0))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -11,7 +11,6 @@ loguru
 | 
			
		|||
pytest
 | 
			
		||||
yacs
 | 
			
		||||
markupsafe==2.0.1
 | 
			
		||||
scikit-image==0.19.3
 | 
			
		||||
diffusers[torch]==0.14.0
 | 
			
		||||
transformers==4.27.4
 | 
			
		||||
gradio
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue