354 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
"""SAMPLING ONLY."""
 | 
						|
 | 
						|
import torch
 | 
						|
import numpy as np
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
 | 
						|
 | 
						|
 | 
						|
class DDIMSampler(object):
 | 
						|
    def __init__(self, model, schedule="linear", **kwargs):
 | 
						|
        super().__init__()
 | 
						|
        self.model = model
 | 
						|
        self.ddpm_num_timesteps = model.num_timesteps
 | 
						|
        self.schedule = schedule
 | 
						|
 | 
						|
    def register_buffer(self, name, attr):
 | 
						|
        if type(attr) == torch.Tensor:
 | 
						|
            if attr.device != torch.device("cuda"):
 | 
						|
                attr = attr.to(torch.device("cuda"))
 | 
						|
        setattr(self, name, attr)
 | 
						|
 | 
						|
    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
 | 
						|
        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
 | 
						|
                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
 | 
						|
        alphas_cumprod = self.model.alphas_cumprod
 | 
						|
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
 | 
						|
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
 | 
						|
 | 
						|
        self.register_buffer('betas', to_torch(self.model.betas))
 | 
						|
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
 | 
						|
        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
 | 
						|
 | 
						|
        # calculations for diffusion q(x_t | x_{t-1}) and others
 | 
						|
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
 | 
						|
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
 | 
						|
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
 | 
						|
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
 | 
						|
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
 | 
						|
 | 
						|
        # ddim sampling parameters
 | 
						|
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
 | 
						|
                                                                                   ddim_timesteps=self.ddim_timesteps,
 | 
						|
                                                                                   eta=ddim_eta,verbose=verbose)
 | 
						|
        self.register_buffer('ddim_sigmas', ddim_sigmas)
 | 
						|
        self.register_buffer('ddim_alphas', ddim_alphas)
 | 
						|
        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
 | 
						|
        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
 | 
						|
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
 | 
						|
            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
 | 
						|
                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
 | 
						|
        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def sample(self,
 | 
						|
               S,
 | 
						|
               batch_size,
 | 
						|
               shape,
 | 
						|
               conditioning=None,
 | 
						|
               callback=None,
 | 
						|
               normals_sequence=None,
 | 
						|
               img_callback=None,
 | 
						|
               quantize_x0=False,
 | 
						|
               eta=0.,
 | 
						|
               mask=None,
 | 
						|
               x0=None,
 | 
						|
               temperature=1.,
 | 
						|
               noise_dropout=0.,
 | 
						|
               score_corrector=None,
 | 
						|
               corrector_kwargs=None,
 | 
						|
               verbose=True,
 | 
						|
               x_T=None,
 | 
						|
               log_every_t=100,
 | 
						|
               unconditional_guidance_scale=1.,
 | 
						|
               unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
 | 
						|
               dynamic_threshold=None,
 | 
						|
               ucg_schedule=None,
 | 
						|
               **kwargs
 | 
						|
               ):
 | 
						|
        if conditioning is not None:
 | 
						|
            if isinstance(conditioning, dict):
 | 
						|
                ctmp = conditioning[list(conditioning.keys())[0]]
 | 
						|
                while isinstance(ctmp, list): ctmp = ctmp[0]
 | 
						|
                cbs = ctmp.shape[0]
 | 
						|
                # cbs = len(ctmp[0])
 | 
						|
                if cbs != batch_size:
 | 
						|
                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
 | 
						|
 | 
						|
            elif isinstance(conditioning, list):
 | 
						|
                for ctmp in conditioning:
 | 
						|
                    if ctmp.shape[0] != batch_size:
 | 
						|
                        print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
 | 
						|
 | 
						|
            else:
 | 
						|
                if conditioning.shape[0] != batch_size:
 | 
						|
                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
 | 
						|
 | 
						|
        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
 | 
						|
        # sampling
 | 
						|
        C, H, W = shape
 | 
						|
        size = (batch_size, C, H, W)
 | 
						|
        print(f'Data shape for DDIM sampling is {size}, eta {eta}')
 | 
						|
 | 
						|
        samples, intermediates = self.ddim_sampling(conditioning, size,
 | 
						|
                                                    callback=callback,
 | 
						|
                                                    img_callback=img_callback,
 | 
						|
                                                    quantize_denoised=quantize_x0,
 | 
						|
                                                    mask=mask, x0=x0,
 | 
						|
                                                    ddim_use_original_steps=False,
 | 
						|
                                                    noise_dropout=noise_dropout,
 | 
						|
                                                    temperature=temperature,
 | 
						|
                                                    score_corrector=score_corrector,
 | 
						|
                                                    corrector_kwargs=corrector_kwargs,
 | 
						|
                                                    x_T=x_T,
 | 
						|
                                                    log_every_t=log_every_t,
 | 
						|
                                                    unconditional_guidance_scale=unconditional_guidance_scale,
 | 
						|
                                                    unconditional_conditioning=unconditional_conditioning,
 | 
						|
                                                    dynamic_threshold=dynamic_threshold,
 | 
						|
                                                    ucg_schedule=ucg_schedule
 | 
						|
                                                    )
 | 
						|
        return samples, intermediates
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def ddim_sampling(self, cond, shape,
 | 
						|
                      x_T=None, ddim_use_original_steps=False,
 | 
						|
                      callback=None, timesteps=None, quantize_denoised=False,
 | 
						|
                      mask=None, x0=None, img_callback=None, log_every_t=100,
 | 
						|
                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
 | 
						|
                      unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
 | 
						|
                      ucg_schedule=None):
 | 
						|
        device = self.model.betas.device
 | 
						|
        b = shape[0]
 | 
						|
        if x_T is None:
 | 
						|
            img = torch.randn(shape, device=device)
 | 
						|
        else:
 | 
						|
            img = x_T
 | 
						|
 | 
						|
        if timesteps is None:
 | 
						|
            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
 | 
						|
        elif timesteps is not None and not ddim_use_original_steps:
 | 
						|
            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
 | 
						|
            timesteps = self.ddim_timesteps[:subset_end]
 | 
						|
 | 
						|
        intermediates = {'x_inter': [img], 'pred_x0': [img], "index": [10000]}
 | 
						|
        time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
 | 
						|
        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
 | 
						|
        print(f"Running DDIM Sampling with {total_steps} timesteps")
 | 
						|
 | 
						|
        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
 | 
						|
 | 
						|
        for i, step in enumerate(iterator):
 | 
						|
            index = total_steps - i - 1
 | 
						|
            ts = torch.full((b,), step, device=device, dtype=torch.long)
 | 
						|
 | 
						|
            if mask is not None:
 | 
						|
                assert x0 is not None
 | 
						|
                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
 | 
						|
                img = img_orig * mask + (1. - mask) * img
 | 
						|
 | 
						|
            if ucg_schedule is not None:
 | 
						|
                assert len(ucg_schedule) == len(time_range)
 | 
						|
                unconditional_guidance_scale = ucg_schedule[i]
 | 
						|
 | 
						|
            outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
 | 
						|
                                      quantize_denoised=quantize_denoised, temperature=temperature,
 | 
						|
                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
 | 
						|
                                      corrector_kwargs=corrector_kwargs,
 | 
						|
                                      unconditional_guidance_scale=unconditional_guidance_scale,
 | 
						|
                                      unconditional_conditioning=unconditional_conditioning,
 | 
						|
                                      dynamic_threshold=dynamic_threshold)
 | 
						|
            img, pred_x0 = outs
 | 
						|
            if callback:
 | 
						|
                callback(i)
 | 
						|
            if img_callback:
 | 
						|
                img_callback(pred_x0, i)
 | 
						|
 | 
						|
            if index % log_every_t == 0 or index == total_steps - 1:
 | 
						|
                intermediates['x_inter'].append(img)
 | 
						|
                intermediates['pred_x0'].append(pred_x0)
 | 
						|
                intermediates['index'].append(index)
 | 
						|
 | 
						|
        return img, intermediates
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
 | 
						|
                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
 | 
						|
                      unconditional_guidance_scale=1., unconditional_conditioning=None,
 | 
						|
                      dynamic_threshold=None):
 | 
						|
        b, *_, device = *x.shape, x.device
 | 
						|
 | 
						|
        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
 | 
						|
            model_output = self.model.apply_model(x, t, c)
 | 
						|
        else:
 | 
						|
            x_in = torch.cat([x] * 2)
 | 
						|
            t_in = torch.cat([t] * 2)
 | 
						|
            if isinstance(c, dict):
 | 
						|
                assert isinstance(unconditional_conditioning, dict)
 | 
						|
                c_in = dict()
 | 
						|
                for k in c:
 | 
						|
                    if isinstance(c[k], list):
 | 
						|
                        c_in[k] = [torch.cat([
 | 
						|
                            unconditional_conditioning[k][i],
 | 
						|
                            c[k][i]]) for i in range(len(c[k]))]
 | 
						|
                    elif isinstance(c[k], dict):
 | 
						|
                        c_in[k] = dict()
 | 
						|
                        for key in c[k]:
 | 
						|
                            if isinstance(c[k][key], list):
 | 
						|
                                if not isinstance(c[k][key][0], torch.Tensor):
 | 
						|
                                    continue
 | 
						|
                                c_in[k][key] = [torch.cat([
 | 
						|
                                    unconditional_conditioning[k][key][i],
 | 
						|
                                    c[k][key][i]]) for i in range(len(c[k][key]))]
 | 
						|
                            else:
 | 
						|
                                c_in[k][key] = torch.cat([
 | 
						|
                                    unconditional_conditioning[k][key],
 | 
						|
                                    c[k][key]])
 | 
						|
 | 
						|
                    else:
 | 
						|
                        c_in[k] = torch.cat([
 | 
						|
                                unconditional_conditioning[k],
 | 
						|
                                c[k]])
 | 
						|
            elif isinstance(c, list):
 | 
						|
                c_in = list()
 | 
						|
                assert isinstance(unconditional_conditioning, list)
 | 
						|
                for i in range(len(c)):
 | 
						|
                    c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
 | 
						|
            else:
 | 
						|
                c_in = torch.cat([unconditional_conditioning, c])
 | 
						|
            model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
 | 
						|
            model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
 | 
						|
 | 
						|
        if self.model.parameterization == "v":
 | 
						|
            e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
 | 
						|
        else:
 | 
						|
            e_t = model_output
 | 
						|
 | 
						|
        if score_corrector is not None:
 | 
						|
            assert self.model.parameterization == "eps", 'not implemented'
 | 
						|
            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
 | 
						|
 | 
						|
        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
 | 
						|
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
 | 
						|
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
 | 
						|
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
 | 
						|
        # select parameters corresponding to the currently considered timestep
 | 
						|
        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
 | 
						|
        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
 | 
						|
        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
 | 
						|
        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
 | 
						|
 | 
						|
        # current prediction for x_0
 | 
						|
        if self.model.parameterization != "v":
 | 
						|
            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
 | 
						|
        else:
 | 
						|
            pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
 | 
						|
 | 
						|
        if quantize_denoised:
 | 
						|
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
 | 
						|
 | 
						|
        if dynamic_threshold is not None:
 | 
						|
            raise NotImplementedError()
 | 
						|
 | 
						|
        # direction pointing to x_t
 | 
						|
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
 | 
						|
        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
 | 
						|
        if noise_dropout > 0.:
 | 
						|
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
 | 
						|
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
 | 
						|
        return x_prev, pred_x0
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
 | 
						|
               unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
 | 
						|
        num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
 | 
						|
 | 
						|
        assert t_enc <= num_reference_steps
 | 
						|
        num_steps = t_enc
 | 
						|
 | 
						|
        if use_original_steps:
 | 
						|
            alphas_next = self.alphas_cumprod[:num_steps]
 | 
						|
            alphas = self.alphas_cumprod_prev[:num_steps]
 | 
						|
        else:
 | 
						|
            alphas_next = self.ddim_alphas[:num_steps]
 | 
						|
            alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
 | 
						|
 | 
						|
        x_next = x0
 | 
						|
        intermediates = []
 | 
						|
        inter_steps = []
 | 
						|
        for i in tqdm(range(num_steps), desc='Encoding Image'):
 | 
						|
            t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
 | 
						|
            if unconditional_guidance_scale == 1.:
 | 
						|
                noise_pred = self.model.apply_model(x_next, t, c)
 | 
						|
            else:
 | 
						|
                assert unconditional_conditioning is not None
 | 
						|
                e_t_uncond, noise_pred = torch.chunk(
 | 
						|
                    self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
 | 
						|
                                           torch.cat((unconditional_conditioning, c))), 2)
 | 
						|
                noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
 | 
						|
 | 
						|
            xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
 | 
						|
            weighted_noise_pred = alphas_next[i].sqrt() * (
 | 
						|
                    (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
 | 
						|
            x_next = xt_weighted + weighted_noise_pred
 | 
						|
            if return_intermediates and i % (
 | 
						|
                    num_steps // return_intermediates) == 0 and i < num_steps - 1:
 | 
						|
                intermediates.append(x_next)
 | 
						|
                inter_steps.append(i)
 | 
						|
            elif return_intermediates and i >= num_steps - 2:
 | 
						|
                intermediates.append(x_next)
 | 
						|
                inter_steps.append(i)
 | 
						|
            if callback: callback(i)
 | 
						|
 | 
						|
        out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
 | 
						|
        if return_intermediates:
 | 
						|
            out.update({'intermediates': intermediates})
 | 
						|
        return x_next, out
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
 | 
						|
        # fast, but does not allow for exact reconstruction
 | 
						|
        # t serves as an index to gather the correct alphas
 | 
						|
        if use_original_steps:
 | 
						|
            sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
 | 
						|
            sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
 | 
						|
        else:
 | 
						|
            sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
 | 
						|
            sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
 | 
						|
 | 
						|
        if noise is None:
 | 
						|
            noise = torch.randn_like(x0)
 | 
						|
        return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
 | 
						|
                extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
 | 
						|
               use_original_steps=False, callback=None):
 | 
						|
 | 
						|
        timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
 | 
						|
        timesteps = timesteps[:t_start]
 | 
						|
 | 
						|
        time_range = np.flip(timesteps)
 | 
						|
        total_steps = timesteps.shape[0]
 | 
						|
        print(f"Running DDIM Sampling with {total_steps} timesteps")
 | 
						|
 | 
						|
        iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
 | 
						|
        x_dec = x_latent
 | 
						|
        for i, step in enumerate(iterator):
 | 
						|
            index = total_steps - i - 1
 | 
						|
            ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
 | 
						|
            x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
 | 
						|
                                          unconditional_guidance_scale=unconditional_guidance_scale,
 | 
						|
                                          unconditional_conditioning=unconditional_conditioning)
 | 
						|
            if callback: callback(i)
 | 
						|
        return x_dec |