2381 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			2381 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			Python
		
	
	
	
"""
 | 
						|
Part of the implementation is borrowed and modified from ControlNet, publicly available at https://github.com/lllyasviel/ControlNet/blob/main/ldm/models/diffusion/ddpm.py
 | 
						|
"""
 | 
						|
 | 
						|
import torch
 | 
						|
import torch.nn as nn
 | 
						|
import numpy as np
 | 
						|
from torch.optim.lr_scheduler import LambdaLR
 | 
						|
from einops import rearrange, repeat
 | 
						|
from contextlib import contextmanager, nullcontext
 | 
						|
from functools import partial
 | 
						|
import itertools
 | 
						|
from tqdm import tqdm
 | 
						|
from torchvision.utils import make_grid
 | 
						|
from omegaconf import ListConfig
 | 
						|
 | 
						|
from iopaint.model.anytext.ldm.util import (
 | 
						|
    log_txt_as_img,
 | 
						|
    exists,
 | 
						|
    default,
 | 
						|
    ismap,
 | 
						|
    isimage,
 | 
						|
    mean_flat,
 | 
						|
    count_params,
 | 
						|
    instantiate_from_config,
 | 
						|
)
 | 
						|
from iopaint.model.anytext.ldm.modules.ema import LitEma
 | 
						|
from iopaint.model.anytext.ldm.modules.distributions.distributions import (
 | 
						|
    normal_kl,
 | 
						|
    DiagonalGaussianDistribution,
 | 
						|
)
 | 
						|
from iopaint.model.anytext.ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
 | 
						|
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
 | 
						|
    make_beta_schedule,
 | 
						|
    extract_into_tensor,
 | 
						|
    noise_like,
 | 
						|
)
 | 
						|
from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler
 | 
						|
import cv2
 | 
						|
 | 
						|
 | 
						|
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
 | 
						|
 | 
						|
PRINT_DEBUG = False
 | 
						|
 | 
						|
 | 
						|
def print_grad(grad):
 | 
						|
    # print('Gradient:', grad)
 | 
						|
    # print(grad.shape)
 | 
						|
    a = grad.max()
 | 
						|
    b = grad.min()
 | 
						|
    # print(f'mean={grad.mean():.4f}, max={a:.4f}, min={b:.4f}')
 | 
						|
    s = 255.0 / (a - b)
 | 
						|
    c = 255 * (-b / (a - b))
 | 
						|
    grad = grad * s + c
 | 
						|
    # print(f'mean={grad.mean():.4f}, max={grad.max():.4f}, min={grad.min():.4f}')
 | 
						|
    img = grad[0].permute(1, 2, 0).detach().cpu().numpy()
 | 
						|
    if img.shape[0] == 512:
 | 
						|
        cv2.imwrite("grad-img.jpg", img)
 | 
						|
    elif img.shape[0] == 64:
 | 
						|
        cv2.imwrite("grad-latent.jpg", img)
 | 
						|
 | 
						|
 | 
						|
def disabled_train(self, mode=True):
 | 
						|
    """Overwrite model.train with this function to make sure train/eval mode
 | 
						|
    does not change anymore."""
 | 
						|
    return self
 | 
						|
 | 
						|
 | 
						|
def uniform_on_device(r1, r2, shape, device):
 | 
						|
    return (r1 - r2) * torch.rand(*shape, device=device) + r2
 | 
						|
 | 
						|
 | 
						|
class DDPM(torch.nn.Module):
 | 
						|
    # classic DDPM with Gaussian diffusion, in image space
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        unet_config,
 | 
						|
        timesteps=1000,
 | 
						|
        beta_schedule="linear",
 | 
						|
        loss_type="l2",
 | 
						|
        ckpt_path=None,
 | 
						|
        ignore_keys=[],
 | 
						|
        load_only_unet=False,
 | 
						|
        monitor="val/loss",
 | 
						|
        use_ema=True,
 | 
						|
        first_stage_key="image",
 | 
						|
        image_size=256,
 | 
						|
        channels=3,
 | 
						|
        log_every_t=100,
 | 
						|
        clip_denoised=True,
 | 
						|
        linear_start=1e-4,
 | 
						|
        linear_end=2e-2,
 | 
						|
        cosine_s=8e-3,
 | 
						|
        given_betas=None,
 | 
						|
        original_elbo_weight=0.0,
 | 
						|
        v_posterior=0.0,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
 | 
						|
        l_simple_weight=1.0,
 | 
						|
        conditioning_key=None,
 | 
						|
        parameterization="eps",  # all assuming fixed variance schedules
 | 
						|
        scheduler_config=None,
 | 
						|
        use_positional_encodings=False,
 | 
						|
        learn_logvar=False,
 | 
						|
        logvar_init=0.0,
 | 
						|
        make_it_fit=False,
 | 
						|
        ucg_training=None,
 | 
						|
        reset_ema=False,
 | 
						|
        reset_num_ema_updates=False,
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
        assert parameterization in [
 | 
						|
            "eps",
 | 
						|
            "x0",
 | 
						|
            "v",
 | 
						|
        ], 'currently only supporting "eps" and "x0" and "v"'
 | 
						|
        self.parameterization = parameterization
 | 
						|
        print(
 | 
						|
            f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode"
 | 
						|
        )
 | 
						|
        self.cond_stage_model = None
 | 
						|
        self.clip_denoised = clip_denoised
 | 
						|
        self.log_every_t = log_every_t
 | 
						|
        self.first_stage_key = first_stage_key
 | 
						|
        self.image_size = image_size  # try conv?
 | 
						|
        self.channels = channels
 | 
						|
        self.use_positional_encodings = use_positional_encodings
 | 
						|
        self.model = DiffusionWrapper(unet_config, conditioning_key)
 | 
						|
        count_params(self.model, verbose=True)
 | 
						|
        self.use_ema = use_ema
 | 
						|
        if self.use_ema:
 | 
						|
            self.model_ema = LitEma(self.model)
 | 
						|
            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
 | 
						|
 | 
						|
        self.use_scheduler = scheduler_config is not None
 | 
						|
        if self.use_scheduler:
 | 
						|
            self.scheduler_config = scheduler_config
 | 
						|
 | 
						|
        self.v_posterior = v_posterior
 | 
						|
        self.original_elbo_weight = original_elbo_weight
 | 
						|
        self.l_simple_weight = l_simple_weight
 | 
						|
 | 
						|
        if monitor is not None:
 | 
						|
            self.monitor = monitor
 | 
						|
        self.make_it_fit = make_it_fit
 | 
						|
        if reset_ema:
 | 
						|
            assert exists(ckpt_path)
 | 
						|
        if ckpt_path is not None:
 | 
						|
            self.init_from_ckpt(
 | 
						|
                ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
 | 
						|
            )
 | 
						|
            if reset_ema:
 | 
						|
                assert self.use_ema
 | 
						|
                print(
 | 
						|
                    f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint."
 | 
						|
                )
 | 
						|
                self.model_ema = LitEma(self.model)
 | 
						|
        if reset_num_ema_updates:
 | 
						|
            print(
 | 
						|
                " +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ "
 | 
						|
            )
 | 
						|
            assert self.use_ema
 | 
						|
            self.model_ema.reset_num_updates()
 | 
						|
 | 
						|
        self.register_schedule(
 | 
						|
            given_betas=given_betas,
 | 
						|
            beta_schedule=beta_schedule,
 | 
						|
            timesteps=timesteps,
 | 
						|
            linear_start=linear_start,
 | 
						|
            linear_end=linear_end,
 | 
						|
            cosine_s=cosine_s,
 | 
						|
        )
 | 
						|
 | 
						|
        self.loss_type = loss_type
 | 
						|
 | 
						|
        self.learn_logvar = learn_logvar
 | 
						|
        logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
 | 
						|
        if self.learn_logvar:
 | 
						|
            self.logvar = nn.Parameter(self.logvar, requires_grad=True)
 | 
						|
        else:
 | 
						|
            self.register_buffer("logvar", logvar)
 | 
						|
 | 
						|
        self.ucg_training = ucg_training or dict()
 | 
						|
        if self.ucg_training:
 | 
						|
            self.ucg_prng = np.random.RandomState()
 | 
						|
 | 
						|
    def register_schedule(
 | 
						|
        self,
 | 
						|
        given_betas=None,
 | 
						|
        beta_schedule="linear",
 | 
						|
        timesteps=1000,
 | 
						|
        linear_start=1e-4,
 | 
						|
        linear_end=2e-2,
 | 
						|
        cosine_s=8e-3,
 | 
						|
    ):
 | 
						|
        if exists(given_betas):
 | 
						|
            betas = given_betas
 | 
						|
        else:
 | 
						|
            betas = make_beta_schedule(
 | 
						|
                beta_schedule,
 | 
						|
                timesteps,
 | 
						|
                linear_start=linear_start,
 | 
						|
                linear_end=linear_end,
 | 
						|
                cosine_s=cosine_s,
 | 
						|
            )
 | 
						|
        alphas = 1.0 - betas
 | 
						|
        alphas_cumprod = np.cumprod(alphas, axis=0)
 | 
						|
        # np.save('1.npy', alphas_cumprod)
 | 
						|
        alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
 | 
						|
 | 
						|
        (timesteps,) = betas.shape
 | 
						|
        self.num_timesteps = int(timesteps)
 | 
						|
        self.linear_start = linear_start
 | 
						|
        self.linear_end = linear_end
 | 
						|
        assert (
 | 
						|
            alphas_cumprod.shape[0] == self.num_timesteps
 | 
						|
        ), "alphas have to be defined for each timestep"
 | 
						|
 | 
						|
        to_torch = partial(torch.tensor, dtype=torch.float32)
 | 
						|
 | 
						|
        self.register_buffer("betas", to_torch(betas))
 | 
						|
        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
 | 
						|
        self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
 | 
						|
 | 
						|
        # calculations for diffusion q(x_t | x_{t-1}) and others
 | 
						|
        self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
 | 
						|
        self.register_buffer(
 | 
						|
            "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
 | 
						|
        )
 | 
						|
 | 
						|
        # calculations for posterior q(x_{t-1} | x_t, x_0)
 | 
						|
        posterior_variance = (1 - self.v_posterior) * betas * (
 | 
						|
            1.0 - alphas_cumprod_prev
 | 
						|
        ) / (1.0 - alphas_cumprod) + self.v_posterior * betas
 | 
						|
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
 | 
						|
        self.register_buffer("posterior_variance", to_torch(posterior_variance))
 | 
						|
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
 | 
						|
        self.register_buffer(
 | 
						|
            "posterior_log_variance_clipped",
 | 
						|
            to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "posterior_mean_coef1",
 | 
						|
            to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "posterior_mean_coef2",
 | 
						|
            to_torch(
 | 
						|
                (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
 | 
						|
            ),
 | 
						|
        )
 | 
						|
 | 
						|
        if self.parameterization == "eps":
 | 
						|
            lvlb_weights = self.betas**2 / (
 | 
						|
                2
 | 
						|
                * self.posterior_variance
 | 
						|
                * to_torch(alphas)
 | 
						|
                * (1 - self.alphas_cumprod)
 | 
						|
            )
 | 
						|
        elif self.parameterization == "x0":
 | 
						|
            lvlb_weights = (
 | 
						|
                0.5
 | 
						|
                * np.sqrt(torch.Tensor(alphas_cumprod))
 | 
						|
                / (2.0 * 1 - torch.Tensor(alphas_cumprod))
 | 
						|
            )
 | 
						|
        elif self.parameterization == "v":
 | 
						|
            lvlb_weights = torch.ones_like(
 | 
						|
                self.betas**2
 | 
						|
                / (
 | 
						|
                    2
 | 
						|
                    * self.posterior_variance
 | 
						|
                    * to_torch(alphas)
 | 
						|
                    * (1 - self.alphas_cumprod)
 | 
						|
                )
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            raise NotImplementedError("mu not supported")
 | 
						|
        lvlb_weights[0] = lvlb_weights[1]
 | 
						|
        self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
 | 
						|
        assert not torch.isnan(self.lvlb_weights).all()
 | 
						|
 | 
						|
    @contextmanager
 | 
						|
    def ema_scope(self, context=None):
 | 
						|
        if self.use_ema:
 | 
						|
            self.model_ema.store(self.model.parameters())
 | 
						|
            self.model_ema.copy_to(self.model)
 | 
						|
            if context is not None:
 | 
						|
                print(f"{context}: Switched to EMA weights")
 | 
						|
        try:
 | 
						|
            yield None
 | 
						|
        finally:
 | 
						|
            if self.use_ema:
 | 
						|
                self.model_ema.restore(self.model.parameters())
 | 
						|
                if context is not None:
 | 
						|
                    print(f"{context}: Restored training weights")
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
 | 
						|
        sd = torch.load(path, map_location="cpu")
 | 
						|
        if "state_dict" in list(sd.keys()):
 | 
						|
            sd = sd["state_dict"]
 | 
						|
        keys = list(sd.keys())
 | 
						|
        for k in keys:
 | 
						|
            for ik in ignore_keys:
 | 
						|
                if k.startswith(ik):
 | 
						|
                    print("Deleting key {} from state_dict.".format(k))
 | 
						|
                    del sd[k]
 | 
						|
        if self.make_it_fit:
 | 
						|
            n_params = len(
 | 
						|
                [
 | 
						|
                    name
 | 
						|
                    for name, _ in itertools.chain(
 | 
						|
                        self.named_parameters(), self.named_buffers()
 | 
						|
                    )
 | 
						|
                ]
 | 
						|
            )
 | 
						|
            for name, param in tqdm(
 | 
						|
                itertools.chain(self.named_parameters(), self.named_buffers()),
 | 
						|
                desc="Fitting old weights to new weights",
 | 
						|
                total=n_params,
 | 
						|
            ):
 | 
						|
                if not name in sd:
 | 
						|
                    continue
 | 
						|
                old_shape = sd[name].shape
 | 
						|
                new_shape = param.shape
 | 
						|
                assert len(old_shape) == len(new_shape)
 | 
						|
                if len(new_shape) > 2:
 | 
						|
                    # we only modify first two axes
 | 
						|
                    assert new_shape[2:] == old_shape[2:]
 | 
						|
                # assumes first axis corresponds to output dim
 | 
						|
                if not new_shape == old_shape:
 | 
						|
                    new_param = param.clone()
 | 
						|
                    old_param = sd[name]
 | 
						|
                    if len(new_shape) == 1:
 | 
						|
                        for i in range(new_param.shape[0]):
 | 
						|
                            new_param[i] = old_param[i % old_shape[0]]
 | 
						|
                    elif len(new_shape) >= 2:
 | 
						|
                        for i in range(new_param.shape[0]):
 | 
						|
                            for j in range(new_param.shape[1]):
 | 
						|
                                new_param[i, j] = old_param[
 | 
						|
                                    i % old_shape[0], j % old_shape[1]
 | 
						|
                                ]
 | 
						|
 | 
						|
                        n_used_old = torch.ones(old_shape[1])
 | 
						|
                        for j in range(new_param.shape[1]):
 | 
						|
                            n_used_old[j % old_shape[1]] += 1
 | 
						|
                        n_used_new = torch.zeros(new_shape[1])
 | 
						|
                        for j in range(new_param.shape[1]):
 | 
						|
                            n_used_new[j] = n_used_old[j % old_shape[1]]
 | 
						|
 | 
						|
                        n_used_new = n_used_new[None, :]
 | 
						|
                        while len(n_used_new.shape) < len(new_shape):
 | 
						|
                            n_used_new = n_used_new.unsqueeze(-1)
 | 
						|
                        new_param /= n_used_new
 | 
						|
 | 
						|
                    sd[name] = new_param
 | 
						|
 | 
						|
        missing, unexpected = (
 | 
						|
            self.load_state_dict(sd, strict=False)
 | 
						|
            if not only_model
 | 
						|
            else self.model.load_state_dict(sd, strict=False)
 | 
						|
        )
 | 
						|
        print(
 | 
						|
            f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
 | 
						|
        )
 | 
						|
        if len(missing) > 0:
 | 
						|
            print(f"Missing Keys:\n {missing}")
 | 
						|
        if len(unexpected) > 0:
 | 
						|
            print(f"\nUnexpected Keys:\n {unexpected}")
 | 
						|
 | 
						|
    def q_mean_variance(self, x_start, t):
 | 
						|
        """
 | 
						|
        Get the distribution q(x_t | x_0).
 | 
						|
        :param x_start: the [N x C x ...] tensor of noiseless inputs.
 | 
						|
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
 | 
						|
        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
 | 
						|
        """
 | 
						|
        mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
 | 
						|
        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
 | 
						|
        log_variance = extract_into_tensor(
 | 
						|
            self.log_one_minus_alphas_cumprod, t, x_start.shape
 | 
						|
        )
 | 
						|
        return mean, variance, log_variance
 | 
						|
 | 
						|
    def predict_start_from_noise(self, x_t, t, noise):
 | 
						|
        return (
 | 
						|
            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
 | 
						|
            - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
 | 
						|
            * noise
 | 
						|
        )
 | 
						|
 | 
						|
    def predict_start_from_z_and_v(self, x_t, t, v):
 | 
						|
        # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
 | 
						|
        # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
 | 
						|
        return (
 | 
						|
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
 | 
						|
            - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
 | 
						|
        )
 | 
						|
 | 
						|
    def predict_eps_from_z_and_v(self, x_t, t, v):
 | 
						|
        return (
 | 
						|
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v
 | 
						|
            + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
 | 
						|
            * x_t
 | 
						|
        )
 | 
						|
 | 
						|
    def q_posterior(self, x_start, x_t, t):
 | 
						|
        posterior_mean = (
 | 
						|
            extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
 | 
						|
            + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
 | 
						|
        )
 | 
						|
        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
 | 
						|
        posterior_log_variance_clipped = extract_into_tensor(
 | 
						|
            self.posterior_log_variance_clipped, t, x_t.shape
 | 
						|
        )
 | 
						|
        return posterior_mean, posterior_variance, posterior_log_variance_clipped
 | 
						|
 | 
						|
    def p_mean_variance(self, x, t, clip_denoised: bool):
 | 
						|
        model_out = self.model(x, t)
 | 
						|
        if self.parameterization == "eps":
 | 
						|
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
 | 
						|
        elif self.parameterization == "x0":
 | 
						|
            x_recon = model_out
 | 
						|
        if clip_denoised:
 | 
						|
            x_recon.clamp_(-1.0, 1.0)
 | 
						|
 | 
						|
        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
 | 
						|
            x_start=x_recon, x_t=x, t=t
 | 
						|
        )
 | 
						|
        return model_mean, posterior_variance, posterior_log_variance
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
 | 
						|
        b, *_, device = *x.shape, x.device
 | 
						|
        model_mean, _, model_log_variance = self.p_mean_variance(
 | 
						|
            x=x, t=t, clip_denoised=clip_denoised
 | 
						|
        )
 | 
						|
        noise = noise_like(x.shape, device, repeat_noise)
 | 
						|
        # no noise when t == 0
 | 
						|
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
 | 
						|
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def p_sample_loop(self, shape, return_intermediates=False):
 | 
						|
        device = self.betas.device
 | 
						|
        b = shape[0]
 | 
						|
        img = torch.randn(shape, device=device)
 | 
						|
        intermediates = [img]
 | 
						|
        for i in tqdm(
 | 
						|
            reversed(range(0, self.num_timesteps)),
 | 
						|
            desc="Sampling t",
 | 
						|
            total=self.num_timesteps,
 | 
						|
        ):
 | 
						|
            img = self.p_sample(
 | 
						|
                img,
 | 
						|
                torch.full((b,), i, device=device, dtype=torch.long),
 | 
						|
                clip_denoised=self.clip_denoised,
 | 
						|
            )
 | 
						|
            if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
 | 
						|
                intermediates.append(img)
 | 
						|
        if return_intermediates:
 | 
						|
            return img, intermediates
 | 
						|
        return img
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def sample(self, batch_size=16, return_intermediates=False):
 | 
						|
        image_size = self.image_size
 | 
						|
        channels = self.channels
 | 
						|
        return self.p_sample_loop(
 | 
						|
            (batch_size, channels, image_size, image_size),
 | 
						|
            return_intermediates=return_intermediates,
 | 
						|
        )
 | 
						|
 | 
						|
    def q_sample(self, x_start, t, noise=None):
 | 
						|
        noise = default(noise, lambda: torch.randn_like(x_start))
 | 
						|
        return (
 | 
						|
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
 | 
						|
            + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
 | 
						|
            * noise
 | 
						|
        )
 | 
						|
 | 
						|
    def get_v(self, x, noise, t):
 | 
						|
        return (
 | 
						|
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
 | 
						|
            - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
 | 
						|
        )
 | 
						|
 | 
						|
    def get_loss(self, pred, target, mean=True):
 | 
						|
        if self.loss_type == "l1":
 | 
						|
            loss = (target - pred).abs()
 | 
						|
            if mean:
 | 
						|
                loss = loss.mean()
 | 
						|
        elif self.loss_type == "l2":
 | 
						|
            if mean:
 | 
						|
                loss = torch.nn.functional.mse_loss(target, pred)
 | 
						|
            else:
 | 
						|
                loss = torch.nn.functional.mse_loss(target, pred, reduction="none")
 | 
						|
        else:
 | 
						|
            raise NotImplementedError("unknown loss type '{loss_type}'")
 | 
						|
 | 
						|
        return loss
 | 
						|
 | 
						|
    def p_losses(self, x_start, t, noise=None):
 | 
						|
        noise = default(noise, lambda: torch.randn_like(x_start))
 | 
						|
        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
 | 
						|
        model_out = self.model(x_noisy, t)
 | 
						|
 | 
						|
        loss_dict = {}
 | 
						|
        if self.parameterization == "eps":
 | 
						|
            target = noise
 | 
						|
        elif self.parameterization == "x0":
 | 
						|
            target = x_start
 | 
						|
        elif self.parameterization == "v":
 | 
						|
            target = self.get_v(x_start, noise, t)
 | 
						|
        else:
 | 
						|
            raise NotImplementedError(
 | 
						|
                f"Parameterization {self.parameterization} not yet supported"
 | 
						|
            )
 | 
						|
 | 
						|
        loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
 | 
						|
 | 
						|
        log_prefix = "train" if self.training else "val"
 | 
						|
 | 
						|
        loss_dict.update({f"{log_prefix}/loss_simple": loss.mean()})
 | 
						|
        loss_simple = loss.mean() * self.l_simple_weight
 | 
						|
 | 
						|
        loss_vlb = (self.lvlb_weights[t] * loss).mean()
 | 
						|
        loss_dict.update({f"{log_prefix}/loss_vlb": loss_vlb})
 | 
						|
 | 
						|
        loss = loss_simple + self.original_elbo_weight * loss_vlb
 | 
						|
 | 
						|
        loss_dict.update({f"{log_prefix}/loss": loss})
 | 
						|
 | 
						|
        return loss, loss_dict
 | 
						|
 | 
						|
    def forward(self, x, *args, **kwargs):
 | 
						|
        # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
 | 
						|
        # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
 | 
						|
        t = torch.randint(
 | 
						|
            0, self.num_timesteps, (x.shape[0],), device=self.device
 | 
						|
        ).long()
 | 
						|
        return self.p_losses(x, t, *args, **kwargs)
 | 
						|
 | 
						|
    def get_input(self, batch, k):
 | 
						|
        x = batch[k]
 | 
						|
        if len(x.shape) == 3:
 | 
						|
            x = x[..., None]
 | 
						|
        x = rearrange(x, "b h w c -> b c h w")
 | 
						|
        x = x.to(memory_format=torch.contiguous_format).float()
 | 
						|
        return x
 | 
						|
 | 
						|
    def shared_step(self, batch):
 | 
						|
        x = self.get_input(batch, self.first_stage_key)
 | 
						|
        loss, loss_dict = self(x)
 | 
						|
        return loss, loss_dict
 | 
						|
 | 
						|
    def training_step(self, batch, batch_idx):
 | 
						|
        for k in self.ucg_training:
 | 
						|
            p = self.ucg_training[k]["p"]
 | 
						|
            val = self.ucg_training[k]["val"]
 | 
						|
            if val is None:
 | 
						|
                val = ""
 | 
						|
            for i in range(len(batch[k])):
 | 
						|
                if self.ucg_prng.choice(2, p=[1 - p, p]):
 | 
						|
                    batch[k][i] = val
 | 
						|
 | 
						|
        loss, loss_dict = self.shared_step(batch)
 | 
						|
 | 
						|
        self.log_dict(
 | 
						|
            loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True
 | 
						|
        )
 | 
						|
 | 
						|
        self.log(
 | 
						|
            "global_step",
 | 
						|
            self.global_step,
 | 
						|
            prog_bar=True,
 | 
						|
            logger=True,
 | 
						|
            on_step=True,
 | 
						|
            on_epoch=False,
 | 
						|
        )
 | 
						|
 | 
						|
        if self.use_scheduler:
 | 
						|
            lr = self.optimizers().param_groups[0]["lr"]
 | 
						|
            self.log(
 | 
						|
                "lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False
 | 
						|
            )
 | 
						|
 | 
						|
        return loss
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def validation_step(self, batch, batch_idx):
 | 
						|
        _, loss_dict_no_ema = self.shared_step(batch)
 | 
						|
        with self.ema_scope():
 | 
						|
            _, loss_dict_ema = self.shared_step(batch)
 | 
						|
            loss_dict_ema = {key + "_ema": loss_dict_ema[key] for key in loss_dict_ema}
 | 
						|
        self.log_dict(
 | 
						|
            loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True
 | 
						|
        )
 | 
						|
        self.log_dict(
 | 
						|
            loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True
 | 
						|
        )
 | 
						|
 | 
						|
    def on_train_batch_end(self, *args, **kwargs):
 | 
						|
        if self.use_ema:
 | 
						|
            self.model_ema(self.model)
 | 
						|
 | 
						|
    def _get_rows_from_list(self, samples):
 | 
						|
        n_imgs_per_row = len(samples)
 | 
						|
        denoise_grid = rearrange(samples, "n b c h w -> b n c h w")
 | 
						|
        denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
 | 
						|
        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
 | 
						|
        return denoise_grid
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
 | 
						|
        log = dict()
 | 
						|
        x = self.get_input(batch, self.first_stage_key)
 | 
						|
        N = min(x.shape[0], N)
 | 
						|
        n_row = min(x.shape[0], n_row)
 | 
						|
        x = x.to(self.device)[:N]
 | 
						|
        log["inputs"] = x
 | 
						|
 | 
						|
        # get diffusion row
 | 
						|
        diffusion_row = list()
 | 
						|
        x_start = x[:n_row]
 | 
						|
 | 
						|
        for t in range(self.num_timesteps):
 | 
						|
            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
 | 
						|
                t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
 | 
						|
                t = t.to(self.device).long()
 | 
						|
                noise = torch.randn_like(x_start)
 | 
						|
                x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
 | 
						|
                diffusion_row.append(x_noisy)
 | 
						|
 | 
						|
        log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
 | 
						|
 | 
						|
        if sample:
 | 
						|
            # get denoise row
 | 
						|
            with self.ema_scope("Plotting"):
 | 
						|
                samples, denoise_row = self.sample(
 | 
						|
                    batch_size=N, return_intermediates=True
 | 
						|
                )
 | 
						|
 | 
						|
            log["samples"] = samples
 | 
						|
            log["denoise_row"] = self._get_rows_from_list(denoise_row)
 | 
						|
 | 
						|
        if return_keys:
 | 
						|
            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
 | 
						|
                return log
 | 
						|
            else:
 | 
						|
                return {key: log[key] for key in return_keys}
 | 
						|
        return log
 | 
						|
 | 
						|
    def configure_optimizers(self):
 | 
						|
        lr = self.learning_rate
 | 
						|
        params = list(self.model.parameters())
 | 
						|
        if self.learn_logvar:
 | 
						|
            params = params + [self.logvar]
 | 
						|
        opt = torch.optim.AdamW(params, lr=lr)
 | 
						|
        return opt
 | 
						|
 | 
						|
 | 
						|
class LatentDiffusion(DDPM):
 | 
						|
    """main class"""
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        first_stage_config,
 | 
						|
        cond_stage_config,
 | 
						|
        num_timesteps_cond=None,
 | 
						|
        cond_stage_key="image",
 | 
						|
        cond_stage_trainable=False,
 | 
						|
        concat_mode=True,
 | 
						|
        cond_stage_forward=None,
 | 
						|
        conditioning_key=None,
 | 
						|
        scale_factor=1.0,
 | 
						|
        scale_by_std=False,
 | 
						|
        force_null_conditioning=False,
 | 
						|
        *args,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        self.force_null_conditioning = force_null_conditioning
 | 
						|
        self.num_timesteps_cond = default(num_timesteps_cond, 1)
 | 
						|
        self.scale_by_std = scale_by_std
 | 
						|
        assert self.num_timesteps_cond <= kwargs["timesteps"]
 | 
						|
        # for backwards compatibility after implementation of DiffusionWrapper
 | 
						|
        if conditioning_key is None:
 | 
						|
            conditioning_key = "concat" if concat_mode else "crossattn"
 | 
						|
        if (
 | 
						|
            cond_stage_config == "__is_unconditional__"
 | 
						|
            and not self.force_null_conditioning
 | 
						|
        ):
 | 
						|
            conditioning_key = None
 | 
						|
        ckpt_path = kwargs.pop("ckpt_path", None)
 | 
						|
        reset_ema = kwargs.pop("reset_ema", False)
 | 
						|
        reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
 | 
						|
        ignore_keys = kwargs.pop("ignore_keys", [])
 | 
						|
        super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
 | 
						|
        self.concat_mode = concat_mode
 | 
						|
        self.cond_stage_trainable = cond_stage_trainable
 | 
						|
        self.cond_stage_key = cond_stage_key
 | 
						|
        try:
 | 
						|
            self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
 | 
						|
        except:
 | 
						|
            self.num_downs = 0
 | 
						|
        if not scale_by_std:
 | 
						|
            self.scale_factor = scale_factor
 | 
						|
        else:
 | 
						|
            self.register_buffer("scale_factor", torch.tensor(scale_factor))
 | 
						|
        self.instantiate_first_stage(first_stage_config)
 | 
						|
        self.instantiate_cond_stage(cond_stage_config)
 | 
						|
        self.cond_stage_forward = cond_stage_forward
 | 
						|
        self.clip_denoised = False
 | 
						|
        self.bbox_tokenizer = None
 | 
						|
 | 
						|
        self.restarted_from_ckpt = False
 | 
						|
        if ckpt_path is not None:
 | 
						|
            self.init_from_ckpt(ckpt_path, ignore_keys)
 | 
						|
            self.restarted_from_ckpt = True
 | 
						|
            if reset_ema:
 | 
						|
                assert self.use_ema
 | 
						|
                print(
 | 
						|
                    f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint."
 | 
						|
                )
 | 
						|
                self.model_ema = LitEma(self.model)
 | 
						|
        if reset_num_ema_updates:
 | 
						|
            print(
 | 
						|
                " +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ "
 | 
						|
            )
 | 
						|
            assert self.use_ema
 | 
						|
            self.model_ema.reset_num_updates()
 | 
						|
 | 
						|
    def make_cond_schedule(
 | 
						|
        self,
 | 
						|
    ):
 | 
						|
        self.cond_ids = torch.full(
 | 
						|
            size=(self.num_timesteps,),
 | 
						|
            fill_value=self.num_timesteps - 1,
 | 
						|
            dtype=torch.long,
 | 
						|
        )
 | 
						|
        ids = torch.round(
 | 
						|
            torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
 | 
						|
        ).long()
 | 
						|
        self.cond_ids[: self.num_timesteps_cond] = ids
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
 | 
						|
        # only for very first batch
 | 
						|
        if (
 | 
						|
            self.scale_by_std
 | 
						|
            and self.current_epoch == 0
 | 
						|
            and self.global_step == 0
 | 
						|
            and batch_idx == 0
 | 
						|
            and not self.restarted_from_ckpt
 | 
						|
        ):
 | 
						|
            assert (
 | 
						|
                self.scale_factor == 1.0
 | 
						|
            ), "rather not use custom rescaling and std-rescaling simultaneously"
 | 
						|
            # set rescale weight to 1./std of encodings
 | 
						|
            print("### USING STD-RESCALING ###")
 | 
						|
            x = super().get_input(batch, self.first_stage_key)
 | 
						|
            x = x.to(self.device)
 | 
						|
            encoder_posterior = self.encode_first_stage(x)
 | 
						|
            z = self.get_first_stage_encoding(encoder_posterior).detach()
 | 
						|
            del self.scale_factor
 | 
						|
            self.register_buffer("scale_factor", 1.0 / z.flatten().std())
 | 
						|
            print(f"setting self.scale_factor to {self.scale_factor}")
 | 
						|
            print("### USING STD-RESCALING ###")
 | 
						|
 | 
						|
    def register_schedule(
 | 
						|
        self,
 | 
						|
        given_betas=None,
 | 
						|
        beta_schedule="linear",
 | 
						|
        timesteps=1000,
 | 
						|
        linear_start=1e-4,
 | 
						|
        linear_end=2e-2,
 | 
						|
        cosine_s=8e-3,
 | 
						|
    ):
 | 
						|
        super().register_schedule(
 | 
						|
            given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
 | 
						|
        )
 | 
						|
 | 
						|
        self.shorten_cond_schedule = self.num_timesteps_cond > 1
 | 
						|
        if self.shorten_cond_schedule:
 | 
						|
            self.make_cond_schedule()
 | 
						|
 | 
						|
    def instantiate_first_stage(self, config):
 | 
						|
        model = instantiate_from_config(config)
 | 
						|
        self.first_stage_model = model.eval()
 | 
						|
        self.first_stage_model.train = disabled_train
 | 
						|
        for param in self.first_stage_model.parameters():
 | 
						|
            param.requires_grad = False
 | 
						|
 | 
						|
    def instantiate_cond_stage(self, config):
 | 
						|
        if not self.cond_stage_trainable:
 | 
						|
            if config == "__is_first_stage__":
 | 
						|
                print("Using first stage also as cond stage.")
 | 
						|
                self.cond_stage_model = self.first_stage_model
 | 
						|
            elif config == "__is_unconditional__":
 | 
						|
                print(f"Training {self.__class__.__name__} as an unconditional model.")
 | 
						|
                self.cond_stage_model = None
 | 
						|
                # self.be_unconditional = True
 | 
						|
            else:
 | 
						|
                model = instantiate_from_config(config)
 | 
						|
                self.cond_stage_model = model.eval()
 | 
						|
                self.cond_stage_model.train = disabled_train
 | 
						|
                for param in self.cond_stage_model.parameters():
 | 
						|
                    param.requires_grad = False
 | 
						|
        else:
 | 
						|
            assert config != "__is_first_stage__"
 | 
						|
            assert config != "__is_unconditional__"
 | 
						|
            model = instantiate_from_config(config)
 | 
						|
            self.cond_stage_model = model
 | 
						|
 | 
						|
    def _get_denoise_row_from_list(
 | 
						|
        self, samples, desc="", force_no_decoder_quantization=False
 | 
						|
    ):
 | 
						|
        denoise_row = []
 | 
						|
        for zd in tqdm(samples, desc=desc):
 | 
						|
            denoise_row.append(
 | 
						|
                self.decode_first_stage(
 | 
						|
                    zd.to(self.device), force_not_quantize=force_no_decoder_quantization
 | 
						|
                )
 | 
						|
            )
 | 
						|
        n_imgs_per_row = len(denoise_row)
 | 
						|
        denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
 | 
						|
        denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w")
 | 
						|
        denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
 | 
						|
        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
 | 
						|
        return denoise_grid
 | 
						|
 | 
						|
    def get_first_stage_encoding(self, encoder_posterior):
 | 
						|
        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
 | 
						|
            z = encoder_posterior.sample()
 | 
						|
        elif isinstance(encoder_posterior, torch.Tensor):
 | 
						|
            z = encoder_posterior
 | 
						|
        else:
 | 
						|
            raise NotImplementedError(
 | 
						|
                f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
 | 
						|
            )
 | 
						|
        return self.scale_factor * z
 | 
						|
 | 
						|
    def get_learned_conditioning(self, c):
 | 
						|
        if self.cond_stage_forward is None:
 | 
						|
            if hasattr(self.cond_stage_model, "encode") and callable(
 | 
						|
                self.cond_stage_model.encode
 | 
						|
            ):
 | 
						|
                c = self.cond_stage_model.encode(c)
 | 
						|
                if isinstance(c, DiagonalGaussianDistribution):
 | 
						|
                    c = c.mode()
 | 
						|
            else:
 | 
						|
                c = self.cond_stage_model(c)
 | 
						|
        else:
 | 
						|
            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
 | 
						|
            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
 | 
						|
        return c
 | 
						|
 | 
						|
    def meshgrid(self, h, w):
 | 
						|
        y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
 | 
						|
        x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
 | 
						|
 | 
						|
        arr = torch.cat([y, x], dim=-1)
 | 
						|
        return arr
 | 
						|
 | 
						|
    def delta_border(self, h, w):
 | 
						|
        """
 | 
						|
        :param h: height
 | 
						|
        :param w: width
 | 
						|
        :return: normalized distance to image border,
 | 
						|
         wtith min distance = 0 at border and max dist = 0.5 at image center
 | 
						|
        """
 | 
						|
        lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
 | 
						|
        arr = self.meshgrid(h, w) / lower_right_corner
 | 
						|
        dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
 | 
						|
        dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
 | 
						|
        edge_dist = torch.min(
 | 
						|
            torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1
 | 
						|
        )[0]
 | 
						|
        return edge_dist
 | 
						|
 | 
						|
    def get_weighting(self, h, w, Ly, Lx, device):
 | 
						|
        weighting = self.delta_border(h, w)
 | 
						|
        weighting = torch.clip(
 | 
						|
            weighting,
 | 
						|
            self.split_input_params["clip_min_weight"],
 | 
						|
            self.split_input_params["clip_max_weight"],
 | 
						|
        )
 | 
						|
        weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
 | 
						|
 | 
						|
        if self.split_input_params["tie_braker"]:
 | 
						|
            L_weighting = self.delta_border(Ly, Lx)
 | 
						|
            L_weighting = torch.clip(
 | 
						|
                L_weighting,
 | 
						|
                self.split_input_params["clip_min_tie_weight"],
 | 
						|
                self.split_input_params["clip_max_tie_weight"],
 | 
						|
            )
 | 
						|
 | 
						|
            L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
 | 
						|
            weighting = weighting * L_weighting
 | 
						|
        return weighting
 | 
						|
 | 
						|
    def get_fold_unfold(
 | 
						|
        self, x, kernel_size, stride, uf=1, df=1
 | 
						|
    ):  # todo load once not every time, shorten code
 | 
						|
        """
 | 
						|
        :param x: img of size (bs, c, h, w)
 | 
						|
        :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
 | 
						|
        """
 | 
						|
        bs, nc, h, w = x.shape
 | 
						|
 | 
						|
        # number of crops in image
 | 
						|
        Ly = (h - kernel_size[0]) // stride[0] + 1
 | 
						|
        Lx = (w - kernel_size[1]) // stride[1] + 1
 | 
						|
 | 
						|
        if uf == 1 and df == 1:
 | 
						|
            fold_params = dict(
 | 
						|
                kernel_size=kernel_size, dilation=1, padding=0, stride=stride
 | 
						|
            )
 | 
						|
            unfold = torch.nn.Unfold(**fold_params)
 | 
						|
 | 
						|
            fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
 | 
						|
 | 
						|
            weighting = self.get_weighting(
 | 
						|
                kernel_size[0], kernel_size[1], Ly, Lx, x.device
 | 
						|
            ).to(x.dtype)
 | 
						|
            normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
 | 
						|
            weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
 | 
						|
 | 
						|
        elif uf > 1 and df == 1:
 | 
						|
            fold_params = dict(
 | 
						|
                kernel_size=kernel_size, dilation=1, padding=0, stride=stride
 | 
						|
            )
 | 
						|
            unfold = torch.nn.Unfold(**fold_params)
 | 
						|
 | 
						|
            fold_params2 = dict(
 | 
						|
                kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
 | 
						|
                dilation=1,
 | 
						|
                padding=0,
 | 
						|
                stride=(stride[0] * uf, stride[1] * uf),
 | 
						|
            )
 | 
						|
            fold = torch.nn.Fold(
 | 
						|
                output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2
 | 
						|
            )
 | 
						|
 | 
						|
            weighting = self.get_weighting(
 | 
						|
                kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device
 | 
						|
            ).to(x.dtype)
 | 
						|
            normalization = fold(weighting).view(
 | 
						|
                1, 1, h * uf, w * uf
 | 
						|
            )  # normalizes the overlap
 | 
						|
            weighting = weighting.view(
 | 
						|
                (1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)
 | 
						|
            )
 | 
						|
 | 
						|
        elif df > 1 and uf == 1:
 | 
						|
            fold_params = dict(
 | 
						|
                kernel_size=kernel_size, dilation=1, padding=0, stride=stride
 | 
						|
            )
 | 
						|
            unfold = torch.nn.Unfold(**fold_params)
 | 
						|
 | 
						|
            fold_params2 = dict(
 | 
						|
                kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
 | 
						|
                dilation=1,
 | 
						|
                padding=0,
 | 
						|
                stride=(stride[0] // df, stride[1] // df),
 | 
						|
            )
 | 
						|
            fold = torch.nn.Fold(
 | 
						|
                output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2
 | 
						|
            )
 | 
						|
 | 
						|
            weighting = self.get_weighting(
 | 
						|
                kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device
 | 
						|
            ).to(x.dtype)
 | 
						|
            normalization = fold(weighting).view(
 | 
						|
                1, 1, h // df, w // df
 | 
						|
            )  # normalizes the overlap
 | 
						|
            weighting = weighting.view(
 | 
						|
                (1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)
 | 
						|
            )
 | 
						|
 | 
						|
        else:
 | 
						|
            raise NotImplementedError
 | 
						|
 | 
						|
        return fold, unfold, normalization, weighting
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def get_input(
 | 
						|
        self,
 | 
						|
        batch,
 | 
						|
        k,
 | 
						|
        return_first_stage_outputs=False,
 | 
						|
        force_c_encode=False,
 | 
						|
        cond_key=None,
 | 
						|
        return_original_cond=False,
 | 
						|
        bs=None,
 | 
						|
        return_x=False,
 | 
						|
        mask_k=None,
 | 
						|
    ):
 | 
						|
        x = super().get_input(batch, k)
 | 
						|
        if bs is not None:
 | 
						|
            x = x[:bs]
 | 
						|
        x = x.to(self.device)
 | 
						|
        encoder_posterior = self.encode_first_stage(x)
 | 
						|
        z = self.get_first_stage_encoding(encoder_posterior).detach()
 | 
						|
 | 
						|
        if mask_k is not None:
 | 
						|
            mx = super().get_input(batch, mask_k)
 | 
						|
            if bs is not None:
 | 
						|
                mx = mx[:bs]
 | 
						|
            mx = mx.to(self.device)
 | 
						|
            encoder_posterior = self.encode_first_stage(mx)
 | 
						|
            mx = self.get_first_stage_encoding(encoder_posterior).detach()
 | 
						|
 | 
						|
        if self.model.conditioning_key is not None and not self.force_null_conditioning:
 | 
						|
            if cond_key is None:
 | 
						|
                cond_key = self.cond_stage_key
 | 
						|
            if cond_key != self.first_stage_key:
 | 
						|
                if cond_key in ["caption", "coordinates_bbox", "txt"]:
 | 
						|
                    xc = batch[cond_key]
 | 
						|
                elif cond_key in ["class_label", "cls"]:
 | 
						|
                    xc = batch
 | 
						|
                else:
 | 
						|
                    xc = super().get_input(batch, cond_key).to(self.device)
 | 
						|
            else:
 | 
						|
                xc = x
 | 
						|
            if not self.cond_stage_trainable or force_c_encode:
 | 
						|
                if isinstance(xc, dict) or isinstance(xc, list):
 | 
						|
                    c = self.get_learned_conditioning(xc)
 | 
						|
                else:
 | 
						|
                    c = self.get_learned_conditioning(xc.to(self.device))
 | 
						|
            else:
 | 
						|
                c = xc
 | 
						|
            if bs is not None:
 | 
						|
                c = c[:bs]
 | 
						|
 | 
						|
            if self.use_positional_encodings:
 | 
						|
                pos_x, pos_y = self.compute_latent_shifts(batch)
 | 
						|
                ckey = __conditioning_keys__[self.model.conditioning_key]
 | 
						|
                c = {ckey: c, "pos_x": pos_x, "pos_y": pos_y}
 | 
						|
 | 
						|
        else:
 | 
						|
            c = None
 | 
						|
            xc = None
 | 
						|
            if self.use_positional_encodings:
 | 
						|
                pos_x, pos_y = self.compute_latent_shifts(batch)
 | 
						|
                c = {"pos_x": pos_x, "pos_y": pos_y}
 | 
						|
        out = [z, c]
 | 
						|
        if return_first_stage_outputs:
 | 
						|
            xrec = self.decode_first_stage(z)
 | 
						|
            out.extend([x, xrec])
 | 
						|
        if return_x:
 | 
						|
            out.extend([x])
 | 
						|
        if return_original_cond:
 | 
						|
            out.append(xc)
 | 
						|
        if mask_k:
 | 
						|
            out.append(mx)
 | 
						|
        return out
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
 | 
						|
        if predict_cids:
 | 
						|
            if z.dim() == 4:
 | 
						|
                z = torch.argmax(z.exp(), dim=1).long()
 | 
						|
            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
 | 
						|
            z = rearrange(z, "b h w c -> b c h w").contiguous()
 | 
						|
 | 
						|
        z = 1.0 / self.scale_factor * z
 | 
						|
        return self.first_stage_model.decode(z)
 | 
						|
 | 
						|
    def decode_first_stage_grad(self, z, predict_cids=False, force_not_quantize=False):
 | 
						|
        if predict_cids:
 | 
						|
            if z.dim() == 4:
 | 
						|
                z = torch.argmax(z.exp(), dim=1).long()
 | 
						|
            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
 | 
						|
            z = rearrange(z, "b h w c -> b c h w").contiguous()
 | 
						|
 | 
						|
        z = 1.0 / self.scale_factor * z
 | 
						|
        return self.first_stage_model.decode(z)
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def encode_first_stage(self, x):
 | 
						|
        return self.first_stage_model.encode(x)
 | 
						|
 | 
						|
    def shared_step(self, batch, **kwargs):
 | 
						|
        x, c = self.get_input(batch, self.first_stage_key)
 | 
						|
        loss = self(x, c)
 | 
						|
        return loss
 | 
						|
 | 
						|
    def forward(self, x, c, *args, **kwargs):
 | 
						|
        t = torch.randint(
 | 
						|
            0, self.num_timesteps, (x.shape[0],), device=self.device
 | 
						|
        ).long()
 | 
						|
        # t = torch.randint(500, 501, (x.shape[0],), device=self.device).long()
 | 
						|
        if self.model.conditioning_key is not None:
 | 
						|
            assert c is not None
 | 
						|
            if self.cond_stage_trainable:
 | 
						|
                c = self.get_learned_conditioning(c)
 | 
						|
            if self.shorten_cond_schedule:  # TODO: drop this option
 | 
						|
                tc = self.cond_ids[t].to(self.device)
 | 
						|
                c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
 | 
						|
        return self.p_losses(x, c, t, *args, **kwargs)
 | 
						|
 | 
						|
    def apply_model(self, x_noisy, t, cond, return_ids=False):
 | 
						|
        if isinstance(cond, dict):
 | 
						|
            # hybrid case, cond is expected to be a dict
 | 
						|
            pass
 | 
						|
        else:
 | 
						|
            if not isinstance(cond, list):
 | 
						|
                cond = [cond]
 | 
						|
            key = (
 | 
						|
                "c_concat" if self.model.conditioning_key == "concat" else "c_crossattn"
 | 
						|
            )
 | 
						|
            cond = {key: cond}
 | 
						|
 | 
						|
        x_recon = self.model(x_noisy, t, **cond)
 | 
						|
 | 
						|
        if isinstance(x_recon, tuple) and not return_ids:
 | 
						|
            return x_recon[0]
 | 
						|
        else:
 | 
						|
            return x_recon
 | 
						|
 | 
						|
    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
 | 
						|
        return (
 | 
						|
            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
 | 
						|
            - pred_xstart
 | 
						|
        ) / extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
 | 
						|
 | 
						|
    def _prior_bpd(self, x_start):
 | 
						|
        """
 | 
						|
        Get the prior KL term for the variational lower-bound, measured in
 | 
						|
        bits-per-dim.
 | 
						|
        This term can't be optimized, as it only depends on the encoder.
 | 
						|
        :param x_start: the [N x C x ...] tensor of inputs.
 | 
						|
        :return: a batch of [N] KL values (in bits), one per batch element.
 | 
						|
        """
 | 
						|
        batch_size = x_start.shape[0]
 | 
						|
        t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
 | 
						|
        qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
 | 
						|
        kl_prior = normal_kl(
 | 
						|
            mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
 | 
						|
        )
 | 
						|
        return mean_flat(kl_prior) / np.log(2.0)
 | 
						|
 | 
						|
    def p_mean_variance(
 | 
						|
        self,
 | 
						|
        x,
 | 
						|
        c,
 | 
						|
        t,
 | 
						|
        clip_denoised: bool,
 | 
						|
        return_codebook_ids=False,
 | 
						|
        quantize_denoised=False,
 | 
						|
        return_x0=False,
 | 
						|
        score_corrector=None,
 | 
						|
        corrector_kwargs=None,
 | 
						|
    ):
 | 
						|
        t_in = t
 | 
						|
        model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
 | 
						|
 | 
						|
        if score_corrector is not None:
 | 
						|
            assert self.parameterization == "eps"
 | 
						|
            model_out = score_corrector.modify_score(
 | 
						|
                self, model_out, x, t, c, **corrector_kwargs
 | 
						|
            )
 | 
						|
 | 
						|
        if return_codebook_ids:
 | 
						|
            model_out, logits = model_out
 | 
						|
 | 
						|
        if self.parameterization == "eps":
 | 
						|
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
 | 
						|
        elif self.parameterization == "x0":
 | 
						|
            x_recon = model_out
 | 
						|
        else:
 | 
						|
            raise NotImplementedError()
 | 
						|
 | 
						|
        if clip_denoised:
 | 
						|
            x_recon.clamp_(-1.0, 1.0)
 | 
						|
        if quantize_denoised:
 | 
						|
            x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
 | 
						|
        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
 | 
						|
            x_start=x_recon, x_t=x, t=t
 | 
						|
        )
 | 
						|
        if return_codebook_ids:
 | 
						|
            return model_mean, posterior_variance, posterior_log_variance, logits
 | 
						|
        elif return_x0:
 | 
						|
            return model_mean, posterior_variance, posterior_log_variance, x_recon
 | 
						|
        else:
 | 
						|
            return model_mean, posterior_variance, posterior_log_variance
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def p_sample(
 | 
						|
        self,
 | 
						|
        x,
 | 
						|
        c,
 | 
						|
        t,
 | 
						|
        clip_denoised=False,
 | 
						|
        repeat_noise=False,
 | 
						|
        return_codebook_ids=False,
 | 
						|
        quantize_denoised=False,
 | 
						|
        return_x0=False,
 | 
						|
        temperature=1.0,
 | 
						|
        noise_dropout=0.0,
 | 
						|
        score_corrector=None,
 | 
						|
        corrector_kwargs=None,
 | 
						|
    ):
 | 
						|
        b, *_, device = *x.shape, x.device
 | 
						|
        outputs = self.p_mean_variance(
 | 
						|
            x=x,
 | 
						|
            c=c,
 | 
						|
            t=t,
 | 
						|
            clip_denoised=clip_denoised,
 | 
						|
            return_codebook_ids=return_codebook_ids,
 | 
						|
            quantize_denoised=quantize_denoised,
 | 
						|
            return_x0=return_x0,
 | 
						|
            score_corrector=score_corrector,
 | 
						|
            corrector_kwargs=corrector_kwargs,
 | 
						|
        )
 | 
						|
        if return_codebook_ids:
 | 
						|
            raise DeprecationWarning("Support dropped.")
 | 
						|
            model_mean, _, model_log_variance, logits = outputs
 | 
						|
        elif return_x0:
 | 
						|
            model_mean, _, model_log_variance, x0 = outputs
 | 
						|
        else:
 | 
						|
            model_mean, _, model_log_variance = outputs
 | 
						|
 | 
						|
        noise = noise_like(x.shape, device, repeat_noise) * temperature
 | 
						|
        if noise_dropout > 0.0:
 | 
						|
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
 | 
						|
        # no noise when t == 0
 | 
						|
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
 | 
						|
 | 
						|
        if return_codebook_ids:
 | 
						|
            return model_mean + nonzero_mask * (
 | 
						|
                0.5 * model_log_variance
 | 
						|
            ).exp() * noise, logits.argmax(dim=1)
 | 
						|
        if return_x0:
 | 
						|
            return (
 | 
						|
                model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
 | 
						|
                x0,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def progressive_denoising(
 | 
						|
        self,
 | 
						|
        cond,
 | 
						|
        shape,
 | 
						|
        verbose=True,
 | 
						|
        callback=None,
 | 
						|
        quantize_denoised=False,
 | 
						|
        img_callback=None,
 | 
						|
        mask=None,
 | 
						|
        x0=None,
 | 
						|
        temperature=1.0,
 | 
						|
        noise_dropout=0.0,
 | 
						|
        score_corrector=None,
 | 
						|
        corrector_kwargs=None,
 | 
						|
        batch_size=None,
 | 
						|
        x_T=None,
 | 
						|
        start_T=None,
 | 
						|
        log_every_t=None,
 | 
						|
    ):
 | 
						|
        if not log_every_t:
 | 
						|
            log_every_t = self.log_every_t
 | 
						|
        timesteps = self.num_timesteps
 | 
						|
        if batch_size is not None:
 | 
						|
            b = batch_size if batch_size is not None else shape[0]
 | 
						|
            shape = [batch_size] + list(shape)
 | 
						|
        else:
 | 
						|
            b = batch_size = shape[0]
 | 
						|
        if x_T is None:
 | 
						|
            img = torch.randn(shape, device=self.device)
 | 
						|
        else:
 | 
						|
            img = x_T
 | 
						|
        intermediates = []
 | 
						|
        if cond is not None:
 | 
						|
            if isinstance(cond, dict):
 | 
						|
                cond = {
 | 
						|
                    key: cond[key][:batch_size]
 | 
						|
                    if not isinstance(cond[key], list)
 | 
						|
                    else list(map(lambda x: x[:batch_size], cond[key]))
 | 
						|
                    for key in cond
 | 
						|
                }
 | 
						|
            else:
 | 
						|
                cond = (
 | 
						|
                    [c[:batch_size] for c in cond]
 | 
						|
                    if isinstance(cond, list)
 | 
						|
                    else cond[:batch_size]
 | 
						|
                )
 | 
						|
 | 
						|
        if start_T is not None:
 | 
						|
            timesteps = min(timesteps, start_T)
 | 
						|
        iterator = (
 | 
						|
            tqdm(
 | 
						|
                reversed(range(0, timesteps)),
 | 
						|
                desc="Progressive Generation",
 | 
						|
                total=timesteps,
 | 
						|
            )
 | 
						|
            if verbose
 | 
						|
            else reversed(range(0, timesteps))
 | 
						|
        )
 | 
						|
        if type(temperature) == float:
 | 
						|
            temperature = [temperature] * timesteps
 | 
						|
 | 
						|
        for i in iterator:
 | 
						|
            ts = torch.full((b,), i, device=self.device, dtype=torch.long)
 | 
						|
            if self.shorten_cond_schedule:
 | 
						|
                assert self.model.conditioning_key != "hybrid"
 | 
						|
                tc = self.cond_ids[ts].to(cond.device)
 | 
						|
                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
 | 
						|
 | 
						|
            img, x0_partial = self.p_sample(
 | 
						|
                img,
 | 
						|
                cond,
 | 
						|
                ts,
 | 
						|
                clip_denoised=self.clip_denoised,
 | 
						|
                quantize_denoised=quantize_denoised,
 | 
						|
                return_x0=True,
 | 
						|
                temperature=temperature[i],
 | 
						|
                noise_dropout=noise_dropout,
 | 
						|
                score_corrector=score_corrector,
 | 
						|
                corrector_kwargs=corrector_kwargs,
 | 
						|
            )
 | 
						|
            if mask is not None:
 | 
						|
                assert x0 is not None
 | 
						|
                img_orig = self.q_sample(x0, ts)
 | 
						|
                img = img_orig * mask + (1.0 - mask) * img
 | 
						|
 | 
						|
            if i % log_every_t == 0 or i == timesteps - 1:
 | 
						|
                intermediates.append(x0_partial)
 | 
						|
            if callback:
 | 
						|
                callback(i)
 | 
						|
            if img_callback:
 | 
						|
                img_callback(img, i)
 | 
						|
        return img, intermediates
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def p_sample_loop(
 | 
						|
        self,
 | 
						|
        cond,
 | 
						|
        shape,
 | 
						|
        return_intermediates=False,
 | 
						|
        x_T=None,
 | 
						|
        verbose=True,
 | 
						|
        callback=None,
 | 
						|
        timesteps=None,
 | 
						|
        quantize_denoised=False,
 | 
						|
        mask=None,
 | 
						|
        x0=None,
 | 
						|
        img_callback=None,
 | 
						|
        start_T=None,
 | 
						|
        log_every_t=None,
 | 
						|
    ):
 | 
						|
        if not log_every_t:
 | 
						|
            log_every_t = self.log_every_t
 | 
						|
        device = self.betas.device
 | 
						|
        b = shape[0]
 | 
						|
        if x_T is None:
 | 
						|
            img = torch.randn(shape, device=device)
 | 
						|
        else:
 | 
						|
            img = x_T
 | 
						|
 | 
						|
        intermediates = [img]
 | 
						|
        if timesteps is None:
 | 
						|
            timesteps = self.num_timesteps
 | 
						|
 | 
						|
        if start_T is not None:
 | 
						|
            timesteps = min(timesteps, start_T)
 | 
						|
        iterator = (
 | 
						|
            tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
 | 
						|
            if verbose
 | 
						|
            else reversed(range(0, timesteps))
 | 
						|
        )
 | 
						|
 | 
						|
        if mask is not None:
 | 
						|
            assert x0 is not None
 | 
						|
            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
 | 
						|
 | 
						|
        for i in iterator:
 | 
						|
            ts = torch.full((b,), i, device=device, dtype=torch.long)
 | 
						|
            if self.shorten_cond_schedule:
 | 
						|
                assert self.model.conditioning_key != "hybrid"
 | 
						|
                tc = self.cond_ids[ts].to(cond.device)
 | 
						|
                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
 | 
						|
 | 
						|
            img = self.p_sample(
 | 
						|
                img,
 | 
						|
                cond,
 | 
						|
                ts,
 | 
						|
                clip_denoised=self.clip_denoised,
 | 
						|
                quantize_denoised=quantize_denoised,
 | 
						|
            )
 | 
						|
            if mask is not None:
 | 
						|
                img_orig = self.q_sample(x0, ts)
 | 
						|
                img = img_orig * mask + (1.0 - mask) * img
 | 
						|
 | 
						|
            if i % log_every_t == 0 or i == timesteps - 1:
 | 
						|
                intermediates.append(img)
 | 
						|
            if callback:
 | 
						|
                callback(i)
 | 
						|
            if img_callback:
 | 
						|
                img_callback(img, i)
 | 
						|
 | 
						|
        if return_intermediates:
 | 
						|
            return img, intermediates
 | 
						|
        return img
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def sample(
 | 
						|
        self,
 | 
						|
        cond,
 | 
						|
        batch_size=16,
 | 
						|
        return_intermediates=False,
 | 
						|
        x_T=None,
 | 
						|
        verbose=True,
 | 
						|
        timesteps=None,
 | 
						|
        quantize_denoised=False,
 | 
						|
        mask=None,
 | 
						|
        x0=None,
 | 
						|
        shape=None,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        if shape is None:
 | 
						|
            shape = (batch_size, self.channels, self.image_size, self.image_size)
 | 
						|
        if cond is not None:
 | 
						|
            if isinstance(cond, dict):
 | 
						|
                cond = {
 | 
						|
                    key: cond[key][:batch_size]
 | 
						|
                    if not isinstance(cond[key], list)
 | 
						|
                    else list(map(lambda x: x[:batch_size], cond[key]))
 | 
						|
                    for key in cond
 | 
						|
                }
 | 
						|
            else:
 | 
						|
                cond = (
 | 
						|
                    [c[:batch_size] for c in cond]
 | 
						|
                    if isinstance(cond, list)
 | 
						|
                    else cond[:batch_size]
 | 
						|
                )
 | 
						|
        return self.p_sample_loop(
 | 
						|
            cond,
 | 
						|
            shape,
 | 
						|
            return_intermediates=return_intermediates,
 | 
						|
            x_T=x_T,
 | 
						|
            verbose=verbose,
 | 
						|
            timesteps=timesteps,
 | 
						|
            quantize_denoised=quantize_denoised,
 | 
						|
            mask=mask,
 | 
						|
            x0=x0,
 | 
						|
        )
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
 | 
						|
        if ddim:
 | 
						|
            ddim_sampler = DDIMSampler(self)
 | 
						|
            shape = (self.channels, self.image_size, self.image_size)
 | 
						|
            samples, intermediates = ddim_sampler.sample(
 | 
						|
                ddim_steps, batch_size, shape, cond, verbose=False, **kwargs
 | 
						|
            )
 | 
						|
 | 
						|
        else:
 | 
						|
            samples, intermediates = self.sample(
 | 
						|
                cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs
 | 
						|
            )
 | 
						|
 | 
						|
        return samples, intermediates
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def get_unconditional_conditioning(self, batch_size, null_label=None):
 | 
						|
        if null_label is not None:
 | 
						|
            xc = null_label
 | 
						|
            if isinstance(xc, ListConfig):
 | 
						|
                xc = list(xc)
 | 
						|
            if isinstance(xc, dict) or isinstance(xc, list):
 | 
						|
                c = self.get_learned_conditioning(xc)
 | 
						|
            else:
 | 
						|
                if hasattr(xc, "to"):
 | 
						|
                    xc = xc.to(self.device)
 | 
						|
                c = self.get_learned_conditioning(xc)
 | 
						|
        else:
 | 
						|
            if self.cond_stage_key in ["class_label", "cls"]:
 | 
						|
                xc = self.cond_stage_model.get_unconditional_conditioning(
 | 
						|
                    batch_size, device=self.device
 | 
						|
                )
 | 
						|
                return self.get_learned_conditioning(xc)
 | 
						|
            else:
 | 
						|
                raise NotImplementedError("todo")
 | 
						|
        if isinstance(c, list):  # in case the encoder gives us a list
 | 
						|
            for i in range(len(c)):
 | 
						|
                c[i] = repeat(c[i], "1 ... -> b ...", b=batch_size).to(self.device)
 | 
						|
        else:
 | 
						|
            c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
 | 
						|
        return c
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def log_images(
 | 
						|
        self,
 | 
						|
        batch,
 | 
						|
        N=8,
 | 
						|
        n_row=4,
 | 
						|
        sample=True,
 | 
						|
        ddim_steps=50,
 | 
						|
        ddim_eta=0.0,
 | 
						|
        return_keys=None,
 | 
						|
        quantize_denoised=True,
 | 
						|
        inpaint=True,
 | 
						|
        plot_denoise_rows=False,
 | 
						|
        plot_progressive_rows=True,
 | 
						|
        plot_diffusion_rows=True,
 | 
						|
        unconditional_guidance_scale=1.0,
 | 
						|
        unconditional_guidance_label=None,
 | 
						|
        use_ema_scope=True,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        ema_scope = self.ema_scope if use_ema_scope else nullcontext
 | 
						|
        use_ddim = ddim_steps is not None
 | 
						|
 | 
						|
        log = dict()
 | 
						|
        z, c, x, xrec, xc = self.get_input(
 | 
						|
            batch,
 | 
						|
            self.first_stage_key,
 | 
						|
            return_first_stage_outputs=True,
 | 
						|
            force_c_encode=True,
 | 
						|
            return_original_cond=True,
 | 
						|
            bs=N,
 | 
						|
        )
 | 
						|
        N = min(x.shape[0], N)
 | 
						|
        n_row = min(x.shape[0], n_row)
 | 
						|
        log["inputs"] = x
 | 
						|
        log["reconstruction"] = xrec
 | 
						|
        if self.model.conditioning_key is not None:
 | 
						|
            if hasattr(self.cond_stage_model, "decode"):
 | 
						|
                xc = self.cond_stage_model.decode(c)
 | 
						|
                log["conditioning"] = xc
 | 
						|
            elif self.cond_stage_key in ["caption", "txt"]:
 | 
						|
                xc = log_txt_as_img(
 | 
						|
                    (x.shape[2], x.shape[3]),
 | 
						|
                    batch[self.cond_stage_key],
 | 
						|
                    size=x.shape[2] // 25,
 | 
						|
                )
 | 
						|
                log["conditioning"] = xc
 | 
						|
            elif self.cond_stage_key in ["class_label", "cls"]:
 | 
						|
                try:
 | 
						|
                    xc = log_txt_as_img(
 | 
						|
                        (x.shape[2], x.shape[3]),
 | 
						|
                        batch["human_label"],
 | 
						|
                        size=x.shape[2] // 25,
 | 
						|
                    )
 | 
						|
                    log["conditioning"] = xc
 | 
						|
                except KeyError:
 | 
						|
                    # probably no "human_label" in batch
 | 
						|
                    pass
 | 
						|
            elif isimage(xc):
 | 
						|
                log["conditioning"] = xc
 | 
						|
            if ismap(xc):
 | 
						|
                log["original_conditioning"] = self.to_rgb(xc)
 | 
						|
 | 
						|
        if plot_diffusion_rows:
 | 
						|
            # get diffusion row
 | 
						|
            diffusion_row = list()
 | 
						|
            z_start = z[:n_row]
 | 
						|
            for t in range(self.num_timesteps):
 | 
						|
                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
 | 
						|
                    t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
 | 
						|
                    t = t.to(self.device).long()
 | 
						|
                    noise = torch.randn_like(z_start)
 | 
						|
                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
 | 
						|
                    diffusion_row.append(self.decode_first_stage(z_noisy))
 | 
						|
 | 
						|
            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
 | 
						|
            diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
 | 
						|
            diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
 | 
						|
            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
 | 
						|
            log["diffusion_row"] = diffusion_grid
 | 
						|
 | 
						|
        if sample:
 | 
						|
            # get denoise row
 | 
						|
            with ema_scope("Sampling"):
 | 
						|
                samples, z_denoise_row = self.sample_log(
 | 
						|
                    cond=c,
 | 
						|
                    batch_size=N,
 | 
						|
                    ddim=use_ddim,
 | 
						|
                    ddim_steps=ddim_steps,
 | 
						|
                    eta=ddim_eta,
 | 
						|
                )
 | 
						|
                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
 | 
						|
            x_samples = self.decode_first_stage(samples)
 | 
						|
            log["samples"] = x_samples
 | 
						|
            if plot_denoise_rows:
 | 
						|
                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
 | 
						|
                log["denoise_row"] = denoise_grid
 | 
						|
 | 
						|
            if (
 | 
						|
                quantize_denoised
 | 
						|
                and not isinstance(self.first_stage_model, AutoencoderKL)
 | 
						|
                and not isinstance(self.first_stage_model, IdentityFirstStage)
 | 
						|
            ):
 | 
						|
                # also display when quantizing x0 while sampling
 | 
						|
                with ema_scope("Plotting Quantized Denoised"):
 | 
						|
                    samples, z_denoise_row = self.sample_log(
 | 
						|
                        cond=c,
 | 
						|
                        batch_size=N,
 | 
						|
                        ddim=use_ddim,
 | 
						|
                        ddim_steps=ddim_steps,
 | 
						|
                        eta=ddim_eta,
 | 
						|
                        quantize_denoised=True,
 | 
						|
                    )
 | 
						|
                    # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
 | 
						|
                    #                                      quantize_denoised=True)
 | 
						|
                x_samples = self.decode_first_stage(samples.to(self.device))
 | 
						|
                log["samples_x0_quantized"] = x_samples
 | 
						|
 | 
						|
        if unconditional_guidance_scale > 1.0:
 | 
						|
            uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
 | 
						|
            if self.model.conditioning_key == "crossattn-adm":
 | 
						|
                uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
 | 
						|
            with ema_scope("Sampling with classifier-free guidance"):
 | 
						|
                samples_cfg, _ = self.sample_log(
 | 
						|
                    cond=c,
 | 
						|
                    batch_size=N,
 | 
						|
                    ddim=use_ddim,
 | 
						|
                    ddim_steps=ddim_steps,
 | 
						|
                    eta=ddim_eta,
 | 
						|
                    unconditional_guidance_scale=unconditional_guidance_scale,
 | 
						|
                    unconditional_conditioning=uc,
 | 
						|
                )
 | 
						|
                x_samples_cfg = self.decode_first_stage(samples_cfg)
 | 
						|
                log[
 | 
						|
                    f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
 | 
						|
                ] = x_samples_cfg
 | 
						|
 | 
						|
        if inpaint:
 | 
						|
            # make a simple center square
 | 
						|
            b, h, w = z.shape[0], z.shape[2], z.shape[3]
 | 
						|
            mask = torch.ones(N, h, w).to(self.device)
 | 
						|
            # zeros will be filled in
 | 
						|
            mask[:, h // 4 : 3 * h // 4, w // 4 : 3 * w // 4] = 0.0
 | 
						|
            mask = mask[:, None, ...]
 | 
						|
            with ema_scope("Plotting Inpaint"):
 | 
						|
                samples, _ = self.sample_log(
 | 
						|
                    cond=c,
 | 
						|
                    batch_size=N,
 | 
						|
                    ddim=use_ddim,
 | 
						|
                    eta=ddim_eta,
 | 
						|
                    ddim_steps=ddim_steps,
 | 
						|
                    x0=z[:N],
 | 
						|
                    mask=mask,
 | 
						|
                )
 | 
						|
            x_samples = self.decode_first_stage(samples.to(self.device))
 | 
						|
            log["samples_inpainting"] = x_samples
 | 
						|
            log["mask"] = mask
 | 
						|
 | 
						|
            # outpaint
 | 
						|
            mask = 1.0 - mask
 | 
						|
            with ema_scope("Plotting Outpaint"):
 | 
						|
                samples, _ = self.sample_log(
 | 
						|
                    cond=c,
 | 
						|
                    batch_size=N,
 | 
						|
                    ddim=use_ddim,
 | 
						|
                    eta=ddim_eta,
 | 
						|
                    ddim_steps=ddim_steps,
 | 
						|
                    x0=z[:N],
 | 
						|
                    mask=mask,
 | 
						|
                )
 | 
						|
            x_samples = self.decode_first_stage(samples.to(self.device))
 | 
						|
            log["samples_outpainting"] = x_samples
 | 
						|
 | 
						|
        if plot_progressive_rows:
 | 
						|
            with ema_scope("Plotting Progressives"):
 | 
						|
                img, progressives = self.progressive_denoising(
 | 
						|
                    c,
 | 
						|
                    shape=(self.channels, self.image_size, self.image_size),
 | 
						|
                    batch_size=N,
 | 
						|
                )
 | 
						|
            prog_row = self._get_denoise_row_from_list(
 | 
						|
                progressives, desc="Progressive Generation"
 | 
						|
            )
 | 
						|
            log["progressive_row"] = prog_row
 | 
						|
 | 
						|
        if return_keys:
 | 
						|
            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
 | 
						|
                return log
 | 
						|
            else:
 | 
						|
                return {key: log[key] for key in return_keys}
 | 
						|
        return log
 | 
						|
 | 
						|
    def configure_optimizers(self):
 | 
						|
        lr = self.learning_rate
 | 
						|
        params = list(self.model.parameters())
 | 
						|
        if self.cond_stage_trainable:
 | 
						|
            print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
 | 
						|
            params = params + list(self.cond_stage_model.parameters())
 | 
						|
        if self.learn_logvar:
 | 
						|
            print("Diffusion model optimizing logvar")
 | 
						|
            params.append(self.logvar)
 | 
						|
        opt = torch.optim.AdamW(params, lr=lr)
 | 
						|
        if self.use_scheduler:
 | 
						|
            assert "target" in self.scheduler_config
 | 
						|
            scheduler = instantiate_from_config(self.scheduler_config)
 | 
						|
 | 
						|
            print("Setting up LambdaLR scheduler...")
 | 
						|
            scheduler = [
 | 
						|
                {
 | 
						|
                    "scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
 | 
						|
                    "interval": "step",
 | 
						|
                    "frequency": 1,
 | 
						|
                }
 | 
						|
            ]
 | 
						|
            return [opt], scheduler
 | 
						|
        return opt
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def to_rgb(self, x):
 | 
						|
        x = x.float()
 | 
						|
        if not hasattr(self, "colorize"):
 | 
						|
            self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
 | 
						|
        x = nn.functional.conv2d(x, weight=self.colorize)
 | 
						|
        x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class DiffusionWrapper(torch.nn.Module):
 | 
						|
    def __init__(self, diff_model_config, conditioning_key):
 | 
						|
        super().__init__()
 | 
						|
        self.sequential_cross_attn = diff_model_config.pop(
 | 
						|
            "sequential_crossattn", False
 | 
						|
        )
 | 
						|
        self.diffusion_model = instantiate_from_config(diff_model_config)
 | 
						|
        self.conditioning_key = conditioning_key
 | 
						|
        assert self.conditioning_key in [
 | 
						|
            None,
 | 
						|
            "concat",
 | 
						|
            "crossattn",
 | 
						|
            "hybrid",
 | 
						|
            "adm",
 | 
						|
            "hybrid-adm",
 | 
						|
            "crossattn-adm",
 | 
						|
        ]
 | 
						|
 | 
						|
    def forward(
 | 
						|
        self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None
 | 
						|
    ):
 | 
						|
        if self.conditioning_key is None:
 | 
						|
            out = self.diffusion_model(x, t)
 | 
						|
        elif self.conditioning_key == "concat":
 | 
						|
            xc = torch.cat([x] + c_concat, dim=1)
 | 
						|
            out = self.diffusion_model(xc, t)
 | 
						|
        elif self.conditioning_key == "crossattn":
 | 
						|
            if not self.sequential_cross_attn:
 | 
						|
                cc = torch.cat(c_crossattn, 1)
 | 
						|
            else:
 | 
						|
                cc = c_crossattn
 | 
						|
            out = self.diffusion_model(x, t, context=cc)
 | 
						|
        elif self.conditioning_key == "hybrid":
 | 
						|
            xc = torch.cat([x] + c_concat, dim=1)
 | 
						|
            cc = torch.cat(c_crossattn, 1)
 | 
						|
            out = self.diffusion_model(xc, t, context=cc)
 | 
						|
        elif self.conditioning_key == "hybrid-adm":
 | 
						|
            assert c_adm is not None
 | 
						|
            xc = torch.cat([x] + c_concat, dim=1)
 | 
						|
            cc = torch.cat(c_crossattn, 1)
 | 
						|
            out = self.diffusion_model(xc, t, context=cc, y=c_adm)
 | 
						|
        elif self.conditioning_key == "crossattn-adm":
 | 
						|
            assert c_adm is not None
 | 
						|
            cc = torch.cat(c_crossattn, 1)
 | 
						|
            out = self.diffusion_model(x, t, context=cc, y=c_adm)
 | 
						|
        elif self.conditioning_key == "adm":
 | 
						|
            cc = c_crossattn[0]
 | 
						|
            out = self.diffusion_model(x, t, y=cc)
 | 
						|
        else:
 | 
						|
            raise NotImplementedError()
 | 
						|
 | 
						|
        return out
 | 
						|
 | 
						|
 | 
						|
class LatentUpscaleDiffusion(LatentDiffusion):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        *args,
 | 
						|
        low_scale_config,
 | 
						|
        low_scale_key="LR",
 | 
						|
        noise_level_key=None,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
        # assumes that neither the cond_stage nor the low_scale_model contain trainable params
 | 
						|
        assert not self.cond_stage_trainable
 | 
						|
        self.instantiate_low_stage(low_scale_config)
 | 
						|
        self.low_scale_key = low_scale_key
 | 
						|
        self.noise_level_key = noise_level_key
 | 
						|
 | 
						|
    def instantiate_low_stage(self, config):
 | 
						|
        model = instantiate_from_config(config)
 | 
						|
        self.low_scale_model = model.eval()
 | 
						|
        self.low_scale_model.train = disabled_train
 | 
						|
        for param in self.low_scale_model.parameters():
 | 
						|
            param.requires_grad = False
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
 | 
						|
        if not log_mode:
 | 
						|
            z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
 | 
						|
        else:
 | 
						|
            z, c, x, xrec, xc = super().get_input(
 | 
						|
                batch,
 | 
						|
                self.first_stage_key,
 | 
						|
                return_first_stage_outputs=True,
 | 
						|
                force_c_encode=True,
 | 
						|
                return_original_cond=True,
 | 
						|
                bs=bs,
 | 
						|
            )
 | 
						|
        x_low = batch[self.low_scale_key][:bs]
 | 
						|
        x_low = rearrange(x_low, "b h w c -> b c h w")
 | 
						|
        x_low = x_low.to(memory_format=torch.contiguous_format).float()
 | 
						|
        zx, noise_level = self.low_scale_model(x_low)
 | 
						|
        if self.noise_level_key is not None:
 | 
						|
            # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
 | 
						|
            raise NotImplementedError("TODO")
 | 
						|
 | 
						|
        all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
 | 
						|
        if log_mode:
 | 
						|
            # TODO: maybe disable if too expensive
 | 
						|
            x_low_rec = self.low_scale_model.decode(zx)
 | 
						|
            return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
 | 
						|
        return z, all_conds
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def log_images(
 | 
						|
        self,
 | 
						|
        batch,
 | 
						|
        N=8,
 | 
						|
        n_row=4,
 | 
						|
        sample=True,
 | 
						|
        ddim_steps=200,
 | 
						|
        ddim_eta=1.0,
 | 
						|
        return_keys=None,
 | 
						|
        plot_denoise_rows=False,
 | 
						|
        plot_progressive_rows=True,
 | 
						|
        plot_diffusion_rows=True,
 | 
						|
        unconditional_guidance_scale=1.0,
 | 
						|
        unconditional_guidance_label=None,
 | 
						|
        use_ema_scope=True,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        ema_scope = self.ema_scope if use_ema_scope else nullcontext
 | 
						|
        use_ddim = ddim_steps is not None
 | 
						|
 | 
						|
        log = dict()
 | 
						|
        z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(
 | 
						|
            batch, self.first_stage_key, bs=N, log_mode=True
 | 
						|
        )
 | 
						|
        N = min(x.shape[0], N)
 | 
						|
        n_row = min(x.shape[0], n_row)
 | 
						|
        log["inputs"] = x
 | 
						|
        log["reconstruction"] = xrec
 | 
						|
        log["x_lr"] = x_low
 | 
						|
        log[
 | 
						|
            f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"
 | 
						|
        ] = x_low_rec
 | 
						|
        if self.model.conditioning_key is not None:
 | 
						|
            if hasattr(self.cond_stage_model, "decode"):
 | 
						|
                xc = self.cond_stage_model.decode(c)
 | 
						|
                log["conditioning"] = xc
 | 
						|
            elif self.cond_stage_key in ["caption", "txt"]:
 | 
						|
                xc = log_txt_as_img(
 | 
						|
                    (x.shape[2], x.shape[3]),
 | 
						|
                    batch[self.cond_stage_key],
 | 
						|
                    size=x.shape[2] // 25,
 | 
						|
                )
 | 
						|
                log["conditioning"] = xc
 | 
						|
            elif self.cond_stage_key in ["class_label", "cls"]:
 | 
						|
                xc = log_txt_as_img(
 | 
						|
                    (x.shape[2], x.shape[3]),
 | 
						|
                    batch["human_label"],
 | 
						|
                    size=x.shape[2] // 25,
 | 
						|
                )
 | 
						|
                log["conditioning"] = xc
 | 
						|
            elif isimage(xc):
 | 
						|
                log["conditioning"] = xc
 | 
						|
            if ismap(xc):
 | 
						|
                log["original_conditioning"] = self.to_rgb(xc)
 | 
						|
 | 
						|
        if plot_diffusion_rows:
 | 
						|
            # get diffusion row
 | 
						|
            diffusion_row = list()
 | 
						|
            z_start = z[:n_row]
 | 
						|
            for t in range(self.num_timesteps):
 | 
						|
                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
 | 
						|
                    t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
 | 
						|
                    t = t.to(self.device).long()
 | 
						|
                    noise = torch.randn_like(z_start)
 | 
						|
                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
 | 
						|
                    diffusion_row.append(self.decode_first_stage(z_noisy))
 | 
						|
 | 
						|
            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
 | 
						|
            diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
 | 
						|
            diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
 | 
						|
            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
 | 
						|
            log["diffusion_row"] = diffusion_grid
 | 
						|
 | 
						|
        if sample:
 | 
						|
            # get denoise row
 | 
						|
            with ema_scope("Sampling"):
 | 
						|
                samples, z_denoise_row = self.sample_log(
 | 
						|
                    cond=c,
 | 
						|
                    batch_size=N,
 | 
						|
                    ddim=use_ddim,
 | 
						|
                    ddim_steps=ddim_steps,
 | 
						|
                    eta=ddim_eta,
 | 
						|
                )
 | 
						|
                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
 | 
						|
            x_samples = self.decode_first_stage(samples)
 | 
						|
            log["samples"] = x_samples
 | 
						|
            if plot_denoise_rows:
 | 
						|
                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
 | 
						|
                log["denoise_row"] = denoise_grid
 | 
						|
 | 
						|
        if unconditional_guidance_scale > 1.0:
 | 
						|
            uc_tmp = self.get_unconditional_conditioning(
 | 
						|
                N, unconditional_guidance_label
 | 
						|
            )
 | 
						|
            # TODO explore better "unconditional" choices for the other keys
 | 
						|
            # maybe guide away from empty text label and highest noise level and maximally degraded zx?
 | 
						|
            uc = dict()
 | 
						|
            for k in c:
 | 
						|
                if k == "c_crossattn":
 | 
						|
                    assert isinstance(c[k], list) and len(c[k]) == 1
 | 
						|
                    uc[k] = [uc_tmp]
 | 
						|
                elif k == "c_adm":  # todo: only run with text-based guidance?
 | 
						|
                    assert isinstance(c[k], torch.Tensor)
 | 
						|
                    # uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
 | 
						|
                    uc[k] = c[k]
 | 
						|
                elif isinstance(c[k], list):
 | 
						|
                    uc[k] = [c[k][i] for i in range(len(c[k]))]
 | 
						|
                else:
 | 
						|
                    uc[k] = c[k]
 | 
						|
 | 
						|
            with ema_scope("Sampling with classifier-free guidance"):
 | 
						|
                samples_cfg, _ = self.sample_log(
 | 
						|
                    cond=c,
 | 
						|
                    batch_size=N,
 | 
						|
                    ddim=use_ddim,
 | 
						|
                    ddim_steps=ddim_steps,
 | 
						|
                    eta=ddim_eta,
 | 
						|
                    unconditional_guidance_scale=unconditional_guidance_scale,
 | 
						|
                    unconditional_conditioning=uc,
 | 
						|
                )
 | 
						|
                x_samples_cfg = self.decode_first_stage(samples_cfg)
 | 
						|
                log[
 | 
						|
                    f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
 | 
						|
                ] = x_samples_cfg
 | 
						|
 | 
						|
        if plot_progressive_rows:
 | 
						|
            with ema_scope("Plotting Progressives"):
 | 
						|
                img, progressives = self.progressive_denoising(
 | 
						|
                    c,
 | 
						|
                    shape=(self.channels, self.image_size, self.image_size),
 | 
						|
                    batch_size=N,
 | 
						|
                )
 | 
						|
            prog_row = self._get_denoise_row_from_list(
 | 
						|
                progressives, desc="Progressive Generation"
 | 
						|
            )
 | 
						|
            log["progressive_row"] = prog_row
 | 
						|
 | 
						|
        return log
 | 
						|
 | 
						|
 | 
						|
class LatentFinetuneDiffusion(LatentDiffusion):
 | 
						|
    """
 | 
						|
    Basis for different finetunas, such as inpainting or depth2image
 | 
						|
    To disable finetuning mode, set finetune_keys to None
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        concat_keys: tuple,
 | 
						|
        finetune_keys=(
 | 
						|
            "model.diffusion_model.input_blocks.0.0.weight",
 | 
						|
            "model_ema.diffusion_modelinput_blocks00weight",
 | 
						|
        ),
 | 
						|
        keep_finetune_dims=4,
 | 
						|
        # if model was trained without concat mode before and we would like to keep these channels
 | 
						|
        c_concat_log_start=None,  # to log reconstruction of c_concat codes
 | 
						|
        c_concat_log_end=None,
 | 
						|
        *args,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        ckpt_path = kwargs.pop("ckpt_path", None)
 | 
						|
        ignore_keys = kwargs.pop("ignore_keys", list())
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
        self.finetune_keys = finetune_keys
 | 
						|
        self.concat_keys = concat_keys
 | 
						|
        self.keep_dims = keep_finetune_dims
 | 
						|
        self.c_concat_log_start = c_concat_log_start
 | 
						|
        self.c_concat_log_end = c_concat_log_end
 | 
						|
        if exists(self.finetune_keys):
 | 
						|
            assert exists(ckpt_path), "can only finetune from a given checkpoint"
 | 
						|
        if exists(ckpt_path):
 | 
						|
            self.init_from_ckpt(ckpt_path, ignore_keys)
 | 
						|
 | 
						|
    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
 | 
						|
        sd = torch.load(path, map_location="cpu")
 | 
						|
        if "state_dict" in list(sd.keys()):
 | 
						|
            sd = sd["state_dict"]
 | 
						|
        keys = list(sd.keys())
 | 
						|
        for k in keys:
 | 
						|
            for ik in ignore_keys:
 | 
						|
                if k.startswith(ik):
 | 
						|
                    print("Deleting key {} from state_dict.".format(k))
 | 
						|
                    del sd[k]
 | 
						|
 | 
						|
            # make it explicit, finetune by including extra input channels
 | 
						|
            if exists(self.finetune_keys) and k in self.finetune_keys:
 | 
						|
                new_entry = None
 | 
						|
                for name, param in self.named_parameters():
 | 
						|
                    if name in self.finetune_keys:
 | 
						|
                        print(
 | 
						|
                            f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only"
 | 
						|
                        )
 | 
						|
                        new_entry = torch.zeros_like(param)  # zero init
 | 
						|
                assert exists(new_entry), "did not find matching parameter to modify"
 | 
						|
                new_entry[:, : self.keep_dims, ...] = sd[k]
 | 
						|
                sd[k] = new_entry
 | 
						|
 | 
						|
        missing, unexpected = (
 | 
						|
            self.load_state_dict(sd, strict=False)
 | 
						|
            if not only_model
 | 
						|
            else self.model.load_state_dict(sd, strict=False)
 | 
						|
        )
 | 
						|
        print(
 | 
						|
            f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
 | 
						|
        )
 | 
						|
        if len(missing) > 0:
 | 
						|
            print(f"Missing Keys: {missing}")
 | 
						|
        if len(unexpected) > 0:
 | 
						|
            print(f"Unexpected Keys: {unexpected}")
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def log_images(
 | 
						|
        self,
 | 
						|
        batch,
 | 
						|
        N=8,
 | 
						|
        n_row=4,
 | 
						|
        sample=True,
 | 
						|
        ddim_steps=200,
 | 
						|
        ddim_eta=1.0,
 | 
						|
        return_keys=None,
 | 
						|
        quantize_denoised=True,
 | 
						|
        inpaint=True,
 | 
						|
        plot_denoise_rows=False,
 | 
						|
        plot_progressive_rows=True,
 | 
						|
        plot_diffusion_rows=True,
 | 
						|
        unconditional_guidance_scale=1.0,
 | 
						|
        unconditional_guidance_label=None,
 | 
						|
        use_ema_scope=True,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        ema_scope = self.ema_scope if use_ema_scope else nullcontext
 | 
						|
        use_ddim = ddim_steps is not None
 | 
						|
 | 
						|
        log = dict()
 | 
						|
        z, c, x, xrec, xc = self.get_input(
 | 
						|
            batch, self.first_stage_key, bs=N, return_first_stage_outputs=True
 | 
						|
        )
 | 
						|
        c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
 | 
						|
        N = min(x.shape[0], N)
 | 
						|
        n_row = min(x.shape[0], n_row)
 | 
						|
        log["inputs"] = x
 | 
						|
        log["reconstruction"] = xrec
 | 
						|
        if self.model.conditioning_key is not None:
 | 
						|
            if hasattr(self.cond_stage_model, "decode"):
 | 
						|
                xc = self.cond_stage_model.decode(c)
 | 
						|
                log["conditioning"] = xc
 | 
						|
            elif self.cond_stage_key in ["caption", "txt"]:
 | 
						|
                xc = log_txt_as_img(
 | 
						|
                    (x.shape[2], x.shape[3]),
 | 
						|
                    batch[self.cond_stage_key],
 | 
						|
                    size=x.shape[2] // 25,
 | 
						|
                )
 | 
						|
                log["conditioning"] = xc
 | 
						|
            elif self.cond_stage_key in ["class_label", "cls"]:
 | 
						|
                xc = log_txt_as_img(
 | 
						|
                    (x.shape[2], x.shape[3]),
 | 
						|
                    batch["human_label"],
 | 
						|
                    size=x.shape[2] // 25,
 | 
						|
                )
 | 
						|
                log["conditioning"] = xc
 | 
						|
            elif isimage(xc):
 | 
						|
                log["conditioning"] = xc
 | 
						|
            if ismap(xc):
 | 
						|
                log["original_conditioning"] = self.to_rgb(xc)
 | 
						|
 | 
						|
        if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
 | 
						|
            log["c_concat_decoded"] = self.decode_first_stage(
 | 
						|
                c_cat[:, self.c_concat_log_start : self.c_concat_log_end]
 | 
						|
            )
 | 
						|
 | 
						|
        if plot_diffusion_rows:
 | 
						|
            # get diffusion row
 | 
						|
            diffusion_row = list()
 | 
						|
            z_start = z[:n_row]
 | 
						|
            for t in range(self.num_timesteps):
 | 
						|
                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
 | 
						|
                    t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
 | 
						|
                    t = t.to(self.device).long()
 | 
						|
                    noise = torch.randn_like(z_start)
 | 
						|
                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
 | 
						|
                    diffusion_row.append(self.decode_first_stage(z_noisy))
 | 
						|
 | 
						|
            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
 | 
						|
            diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
 | 
						|
            diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
 | 
						|
            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
 | 
						|
            log["diffusion_row"] = diffusion_grid
 | 
						|
 | 
						|
        if sample:
 | 
						|
            # get denoise row
 | 
						|
            with ema_scope("Sampling"):
 | 
						|
                samples, z_denoise_row = self.sample_log(
 | 
						|
                    cond={"c_concat": [c_cat], "c_crossattn": [c]},
 | 
						|
                    batch_size=N,
 | 
						|
                    ddim=use_ddim,
 | 
						|
                    ddim_steps=ddim_steps,
 | 
						|
                    eta=ddim_eta,
 | 
						|
                )
 | 
						|
                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
 | 
						|
            x_samples = self.decode_first_stage(samples)
 | 
						|
            log["samples"] = x_samples
 | 
						|
            if plot_denoise_rows:
 | 
						|
                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
 | 
						|
                log["denoise_row"] = denoise_grid
 | 
						|
 | 
						|
        if unconditional_guidance_scale > 1.0:
 | 
						|
            uc_cross = self.get_unconditional_conditioning(
 | 
						|
                N, unconditional_guidance_label
 | 
						|
            )
 | 
						|
            uc_cat = c_cat
 | 
						|
            uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
 | 
						|
            with ema_scope("Sampling with classifier-free guidance"):
 | 
						|
                samples_cfg, _ = self.sample_log(
 | 
						|
                    cond={"c_concat": [c_cat], "c_crossattn": [c]},
 | 
						|
                    batch_size=N,
 | 
						|
                    ddim=use_ddim,
 | 
						|
                    ddim_steps=ddim_steps,
 | 
						|
                    eta=ddim_eta,
 | 
						|
                    unconditional_guidance_scale=unconditional_guidance_scale,
 | 
						|
                    unconditional_conditioning=uc_full,
 | 
						|
                )
 | 
						|
                x_samples_cfg = self.decode_first_stage(samples_cfg)
 | 
						|
                log[
 | 
						|
                    f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
 | 
						|
                ] = x_samples_cfg
 | 
						|
 | 
						|
        return log
 | 
						|
 | 
						|
 | 
						|
class LatentInpaintDiffusion(LatentFinetuneDiffusion):
 | 
						|
    """
 | 
						|
    can either run as pure inpainting model (only concat mode) or with mixed conditionings,
 | 
						|
    e.g. mask as concat and text via cross-attn.
 | 
						|
    To disable finetuning mode, set finetune_keys to None
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        concat_keys=("mask", "masked_image"),
 | 
						|
        masked_image_key="masked_image",
 | 
						|
        *args,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        super().__init__(concat_keys, *args, **kwargs)
 | 
						|
        self.masked_image_key = masked_image_key
 | 
						|
        assert self.masked_image_key in concat_keys
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def get_input(
 | 
						|
        self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
 | 
						|
    ):
 | 
						|
        # note: restricted to non-trainable encoders currently
 | 
						|
        assert (
 | 
						|
            not self.cond_stage_trainable
 | 
						|
        ), "trainable cond stages not yet supported for inpainting"
 | 
						|
        z, c, x, xrec, xc = super().get_input(
 | 
						|
            batch,
 | 
						|
            self.first_stage_key,
 | 
						|
            return_first_stage_outputs=True,
 | 
						|
            force_c_encode=True,
 | 
						|
            return_original_cond=True,
 | 
						|
            bs=bs,
 | 
						|
        )
 | 
						|
 | 
						|
        assert exists(self.concat_keys)
 | 
						|
        c_cat = list()
 | 
						|
        for ck in self.concat_keys:
 | 
						|
            cc = (
 | 
						|
                rearrange(batch[ck], "b h w c -> b c h w")
 | 
						|
                .to(memory_format=torch.contiguous_format)
 | 
						|
                .float()
 | 
						|
            )
 | 
						|
            if bs is not None:
 | 
						|
                cc = cc[:bs]
 | 
						|
                cc = cc.to(self.device)
 | 
						|
            bchw = z.shape
 | 
						|
            if ck != self.masked_image_key:
 | 
						|
                cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
 | 
						|
            else:
 | 
						|
                cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
 | 
						|
            c_cat.append(cc)
 | 
						|
        c_cat = torch.cat(c_cat, dim=1)
 | 
						|
        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
 | 
						|
        if return_first_stage_outputs:
 | 
						|
            return z, all_conds, x, xrec, xc
 | 
						|
        return z, all_conds
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def log_images(self, *args, **kwargs):
 | 
						|
        log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
 | 
						|
        log["masked_image"] = (
 | 
						|
            rearrange(args[0]["masked_image"], "b h w c -> b c h w")
 | 
						|
            .to(memory_format=torch.contiguous_format)
 | 
						|
            .float()
 | 
						|
        )
 | 
						|
        return log
 | 
						|
 | 
						|
 | 
						|
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
 | 
						|
    """
 | 
						|
    condition on monocular depth estimation
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
 | 
						|
        super().__init__(concat_keys=concat_keys, *args, **kwargs)
 | 
						|
        self.depth_model = instantiate_from_config(depth_stage_config)
 | 
						|
        self.depth_stage_key = concat_keys[0]
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def get_input(
 | 
						|
        self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
 | 
						|
    ):
 | 
						|
        # note: restricted to non-trainable encoders currently
 | 
						|
        assert (
 | 
						|
            not self.cond_stage_trainable
 | 
						|
        ), "trainable cond stages not yet supported for depth2img"
 | 
						|
        z, c, x, xrec, xc = super().get_input(
 | 
						|
            batch,
 | 
						|
            self.first_stage_key,
 | 
						|
            return_first_stage_outputs=True,
 | 
						|
            force_c_encode=True,
 | 
						|
            return_original_cond=True,
 | 
						|
            bs=bs,
 | 
						|
        )
 | 
						|
 | 
						|
        assert exists(self.concat_keys)
 | 
						|
        assert len(self.concat_keys) == 1
 | 
						|
        c_cat = list()
 | 
						|
        for ck in self.concat_keys:
 | 
						|
            cc = batch[ck]
 | 
						|
            if bs is not None:
 | 
						|
                cc = cc[:bs]
 | 
						|
                cc = cc.to(self.device)
 | 
						|
            cc = self.depth_model(cc)
 | 
						|
            cc = torch.nn.functional.interpolate(
 | 
						|
                cc,
 | 
						|
                size=z.shape[2:],
 | 
						|
                mode="bicubic",
 | 
						|
                align_corners=False,
 | 
						|
            )
 | 
						|
 | 
						|
            depth_min, depth_max = torch.amin(
 | 
						|
                cc, dim=[1, 2, 3], keepdim=True
 | 
						|
            ), torch.amax(cc, dim=[1, 2, 3], keepdim=True)
 | 
						|
            cc = 2.0 * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.0
 | 
						|
            c_cat.append(cc)
 | 
						|
        c_cat = torch.cat(c_cat, dim=1)
 | 
						|
        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
 | 
						|
        if return_first_stage_outputs:
 | 
						|
            return z, all_conds, x, xrec, xc
 | 
						|
        return z, all_conds
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def log_images(self, *args, **kwargs):
 | 
						|
        log = super().log_images(*args, **kwargs)
 | 
						|
        depth = self.depth_model(args[0][self.depth_stage_key])
 | 
						|
        depth_min, depth_max = torch.amin(
 | 
						|
            depth, dim=[1, 2, 3], keepdim=True
 | 
						|
        ), torch.amax(depth, dim=[1, 2, 3], keepdim=True)
 | 
						|
        log["depth"] = 2.0 * (depth - depth_min) / (depth_max - depth_min) - 1.0
 | 
						|
        return log
 | 
						|
 | 
						|
 | 
						|
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
 | 
						|
    """
 | 
						|
    condition on low-res image (and optionally on some spatial noise augmentation)
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        concat_keys=("lr",),
 | 
						|
        reshuffle_patch_size=None,
 | 
						|
        low_scale_config=None,
 | 
						|
        low_scale_key=None,
 | 
						|
        *args,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        super().__init__(concat_keys=concat_keys, *args, **kwargs)
 | 
						|
        self.reshuffle_patch_size = reshuffle_patch_size
 | 
						|
        self.low_scale_model = None
 | 
						|
        if low_scale_config is not None:
 | 
						|
            print("Initializing a low-scale model")
 | 
						|
            assert exists(low_scale_key)
 | 
						|
            self.instantiate_low_stage(low_scale_config)
 | 
						|
            self.low_scale_key = low_scale_key
 | 
						|
 | 
						|
    def instantiate_low_stage(self, config):
 | 
						|
        model = instantiate_from_config(config)
 | 
						|
        self.low_scale_model = model.eval()
 | 
						|
        self.low_scale_model.train = disabled_train
 | 
						|
        for param in self.low_scale_model.parameters():
 | 
						|
            param.requires_grad = False
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def get_input(
 | 
						|
        self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
 | 
						|
    ):
 | 
						|
        # note: restricted to non-trainable encoders currently
 | 
						|
        assert (
 | 
						|
            not self.cond_stage_trainable
 | 
						|
        ), "trainable cond stages not yet supported for upscaling-ft"
 | 
						|
        z, c, x, xrec, xc = super().get_input(
 | 
						|
            batch,
 | 
						|
            self.first_stage_key,
 | 
						|
            return_first_stage_outputs=True,
 | 
						|
            force_c_encode=True,
 | 
						|
            return_original_cond=True,
 | 
						|
            bs=bs,
 | 
						|
        )
 | 
						|
 | 
						|
        assert exists(self.concat_keys)
 | 
						|
        assert len(self.concat_keys) == 1
 | 
						|
        # optionally make spatial noise_level here
 | 
						|
        c_cat = list()
 | 
						|
        noise_level = None
 | 
						|
        for ck in self.concat_keys:
 | 
						|
            cc = batch[ck]
 | 
						|
            cc = rearrange(cc, "b h w c -> b c h w")
 | 
						|
            if exists(self.reshuffle_patch_size):
 | 
						|
                assert isinstance(self.reshuffle_patch_size, int)
 | 
						|
                cc = rearrange(
 | 
						|
                    cc,
 | 
						|
                    "b c (p1 h) (p2 w) -> b (p1 p2 c) h w",
 | 
						|
                    p1=self.reshuffle_patch_size,
 | 
						|
                    p2=self.reshuffle_patch_size,
 | 
						|
                )
 | 
						|
            if bs is not None:
 | 
						|
                cc = cc[:bs]
 | 
						|
                cc = cc.to(self.device)
 | 
						|
            if exists(self.low_scale_model) and ck == self.low_scale_key:
 | 
						|
                cc, noise_level = self.low_scale_model(cc)
 | 
						|
            c_cat.append(cc)
 | 
						|
        c_cat = torch.cat(c_cat, dim=1)
 | 
						|
        if exists(noise_level):
 | 
						|
            all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
 | 
						|
        else:
 | 
						|
            all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
 | 
						|
        if return_first_stage_outputs:
 | 
						|
            return z, all_conds, x, xrec, xc
 | 
						|
        return z, all_conds
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def log_images(self, *args, **kwargs):
 | 
						|
        log = super().log_images(*args, **kwargs)
 | 
						|
        log["lr"] = rearrange(args[0]["lr"], "b h w c -> b c h w")
 | 
						|
        return log
 |