191 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
import PIL.Image
 | 
						|
import cv2
 | 
						|
import torch
 | 
						|
from diffusers import ControlNetModel
 | 
						|
from loguru import logger
 | 
						|
from iopaint.schema import InpaintRequest, ModelType
 | 
						|
 | 
						|
from .base import DiffusionInpaintModel
 | 
						|
from .helper.controlnet_preprocess import (
 | 
						|
    make_canny_control_image,
 | 
						|
    make_openpose_control_image,
 | 
						|
    make_depth_control_image,
 | 
						|
    make_inpaint_control_image,
 | 
						|
)
 | 
						|
from .helper.cpu_text_encoder import CPUTextEncoderWrapper
 | 
						|
from .original_sd_configs import get_config_files
 | 
						|
from .utils import (
 | 
						|
    get_scheduler,
 | 
						|
    handle_from_pretrained_exceptions,
 | 
						|
    get_torch_dtype,
 | 
						|
    enable_low_mem,
 | 
						|
    is_local_files_only,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
class ControlNet(DiffusionInpaintModel):
 | 
						|
    name = "controlnet"
 | 
						|
    pad_mod = 8
 | 
						|
    min_size = 512
 | 
						|
 | 
						|
    @property
 | 
						|
    def lcm_lora_id(self):
 | 
						|
        if self.model_info.model_type in [
 | 
						|
            ModelType.DIFFUSERS_SD,
 | 
						|
            ModelType.DIFFUSERS_SD_INPAINT,
 | 
						|
        ]:
 | 
						|
            return "latent-consistency/lcm-lora-sdv1-5"
 | 
						|
        if self.model_info.model_type in [
 | 
						|
            ModelType.DIFFUSERS_SDXL,
 | 
						|
            ModelType.DIFFUSERS_SDXL_INPAINT,
 | 
						|
        ]:
 | 
						|
            return "latent-consistency/lcm-lora-sdxl"
 | 
						|
        raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}")
 | 
						|
 | 
						|
    def init_model(self, device: torch.device, **kwargs):
 | 
						|
        model_info = kwargs["model_info"]
 | 
						|
        controlnet_method = kwargs["controlnet_method"]
 | 
						|
 | 
						|
        self.model_info = model_info
 | 
						|
        self.controlnet_method = controlnet_method
 | 
						|
 | 
						|
        model_kwargs = {
 | 
						|
            **kwargs.get("pipe_components", {}),
 | 
						|
            "local_files_only": is_local_files_only(**kwargs),
 | 
						|
        }
 | 
						|
        self.local_files_only = model_kwargs["local_files_only"]
 | 
						|
 | 
						|
        disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
 | 
						|
            "cpu_offload", False
 | 
						|
        )
 | 
						|
        if disable_nsfw_checker:
 | 
						|
            logger.info("Disable Stable Diffusion Model NSFW checker")
 | 
						|
            model_kwargs.update(
 | 
						|
                dict(
 | 
						|
                    safety_checker=None,
 | 
						|
                    feature_extractor=None,
 | 
						|
                    requires_safety_checker=False,
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
        use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
 | 
						|
        self.torch_dtype = torch_dtype
 | 
						|
 | 
						|
        if model_info.model_type in [
 | 
						|
            ModelType.DIFFUSERS_SD,
 | 
						|
            ModelType.DIFFUSERS_SD_INPAINT,
 | 
						|
        ]:
 | 
						|
            from diffusers import (
 | 
						|
                StableDiffusionControlNetInpaintPipeline as PipeClass,
 | 
						|
            )
 | 
						|
        elif model_info.model_type in [
 | 
						|
            ModelType.DIFFUSERS_SDXL,
 | 
						|
            ModelType.DIFFUSERS_SDXL_INPAINT,
 | 
						|
        ]:
 | 
						|
            from diffusers import (
 | 
						|
                StableDiffusionXLControlNetInpaintPipeline as PipeClass,
 | 
						|
            )
 | 
						|
 | 
						|
        controlnet = ControlNetModel.from_pretrained(
 | 
						|
            pretrained_model_name_or_path=controlnet_method,
 | 
						|
            resume_download=True,
 | 
						|
            local_files_only=model_kwargs["local_files_only"],
 | 
						|
            torch_dtype=self.torch_dtype,
 | 
						|
        )
 | 
						|
        if model_info.is_single_file_diffusers:
 | 
						|
            if self.model_info.model_type == ModelType.DIFFUSERS_SD:
 | 
						|
                model_kwargs["num_in_channels"] = 4
 | 
						|
            else:
 | 
						|
                model_kwargs["num_in_channels"] = 9
 | 
						|
 | 
						|
            self.model = PipeClass.from_single_file(
 | 
						|
                model_info.path,
 | 
						|
                controlnet=controlnet,
 | 
						|
                load_safety_checker=not disable_nsfw_checker,
 | 
						|
                torch_dtype=torch_dtype,
 | 
						|
                config_files=get_config_files(),
 | 
						|
                **model_kwargs,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            self.model = handle_from_pretrained_exceptions(
 | 
						|
                PipeClass.from_pretrained,
 | 
						|
                pretrained_model_name_or_path=model_info.path,
 | 
						|
                controlnet=controlnet,
 | 
						|
                variant="fp16",
 | 
						|
                torch_dtype=torch_dtype,
 | 
						|
                **model_kwargs,
 | 
						|
            )
 | 
						|
 | 
						|
        enable_low_mem(self.model, kwargs.get("low_mem", False))
 | 
						|
 | 
						|
        if kwargs.get("cpu_offload", False) and use_gpu:
 | 
						|
            logger.info("Enable sequential cpu offload")
 | 
						|
            self.model.enable_sequential_cpu_offload(gpu_id=0)
 | 
						|
        else:
 | 
						|
            self.model = self.model.to(device)
 | 
						|
            if kwargs["sd_cpu_textencoder"]:
 | 
						|
                logger.info("Run Stable Diffusion TextEncoder on CPU")
 | 
						|
                self.model.text_encoder = CPUTextEncoderWrapper(
 | 
						|
                    self.model.text_encoder, torch_dtype
 | 
						|
                )
 | 
						|
 | 
						|
        self.callback = kwargs.pop("callback", None)
 | 
						|
 | 
						|
    def switch_controlnet_method(self, new_method: str):
 | 
						|
        self.controlnet_method = new_method
 | 
						|
        controlnet = ControlNetModel.from_pretrained(
 | 
						|
            new_method,
 | 
						|
            resume_download=True,
 | 
						|
            local_files_only=self.local_files_only,
 | 
						|
            torch_dtype=self.torch_dtype,
 | 
						|
        ).to(self.model.device)
 | 
						|
        self.model.controlnet = controlnet
 | 
						|
 | 
						|
    def _get_control_image(self, image, mask):
 | 
						|
        if "canny" in self.controlnet_method:
 | 
						|
            control_image = make_canny_control_image(image)
 | 
						|
        elif "openpose" in self.controlnet_method:
 | 
						|
            control_image = make_openpose_control_image(image)
 | 
						|
        elif "depth" in self.controlnet_method:
 | 
						|
            control_image = make_depth_control_image(image)
 | 
						|
        elif "inpaint" in self.controlnet_method:
 | 
						|
            control_image = make_inpaint_control_image(image, mask)
 | 
						|
        else:
 | 
						|
            raise NotImplementedError(f"{self.controlnet_method} not implemented")
 | 
						|
        return control_image
 | 
						|
 | 
						|
    def forward(self, image, mask, config: InpaintRequest):
 | 
						|
        """Input image and output image have same size
 | 
						|
        image: [H, W, C] RGB
 | 
						|
        mask: [H, W, 1] 255 means area to repaint
 | 
						|
        return: BGR IMAGE
 | 
						|
        """
 | 
						|
        scheduler_config = self.model.scheduler.config
 | 
						|
        scheduler = get_scheduler(config.sd_sampler, scheduler_config)
 | 
						|
        self.model.scheduler = scheduler
 | 
						|
 | 
						|
        img_h, img_w = image.shape[:2]
 | 
						|
        control_image = self._get_control_image(image, mask)
 | 
						|
        mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
 | 
						|
        image = PIL.Image.fromarray(image)
 | 
						|
 | 
						|
        output = self.model(
 | 
						|
            image=image,
 | 
						|
            mask_image=mask_image,
 | 
						|
            control_image=control_image,
 | 
						|
            prompt=config.prompt,
 | 
						|
            negative_prompt=config.negative_prompt,
 | 
						|
            num_inference_steps=config.sd_steps,
 | 
						|
            guidance_scale=config.sd_guidance_scale,
 | 
						|
            output_type="np",
 | 
						|
            callback_on_step_end=self.callback,
 | 
						|
            height=img_h,
 | 
						|
            width=img_w,
 | 
						|
            generator=torch.manual_seed(config.sd_seed),
 | 
						|
            controlnet_conditioning_scale=config.controlnet_conditioning_scale,
 | 
						|
        ).images[0]
 | 
						|
 | 
						|
        output = (output * 255).round().astype("uint8")
 | 
						|
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
 | 
						|
        return output
 |