194 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
import torch
 | 
						|
import numpy as np
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from .utils import make_ddim_timesteps, make_ddim_sampling_parameters, noise_like
 | 
						|
 | 
						|
from loguru import logger
 | 
						|
 | 
						|
 | 
						|
class DDIMSampler(object):
 | 
						|
    def __init__(self, model, schedule="linear"):
 | 
						|
        super().__init__()
 | 
						|
        self.model = model
 | 
						|
        self.ddpm_num_timesteps = model.num_timesteps
 | 
						|
        self.schedule = schedule
 | 
						|
 | 
						|
    def register_buffer(self, name, attr):
 | 
						|
        setattr(self, name, attr)
 | 
						|
 | 
						|
    def make_schedule(
 | 
						|
        self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
 | 
						|
    ):
 | 
						|
        self.ddim_timesteps = make_ddim_timesteps(
 | 
						|
            ddim_discr_method=ddim_discretize,
 | 
						|
            num_ddim_timesteps=ddim_num_steps,
 | 
						|
            # array([1])
 | 
						|
            num_ddpm_timesteps=self.ddpm_num_timesteps,
 | 
						|
            verbose=verbose,
 | 
						|
        )
 | 
						|
        alphas_cumprod = self.model.alphas_cumprod  # torch.Size([1000])
 | 
						|
        assert (
 | 
						|
                alphas_cumprod.shape[0] == self.ddpm_num_timesteps
 | 
						|
        ), "alphas have to be defined for each timestep"
 | 
						|
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
 | 
						|
 | 
						|
        self.register_buffer("betas", to_torch(self.model.betas))
 | 
						|
        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
 | 
						|
        self.register_buffer(
 | 
						|
            "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
 | 
						|
        )
 | 
						|
 | 
						|
        # calculations for diffusion q(x_t | x_{t-1}) and others
 | 
						|
        self.register_buffer(
 | 
						|
            "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "sqrt_one_minus_alphas_cumprod",
 | 
						|
            to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "sqrt_recipm1_alphas_cumprod",
 | 
						|
            to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
 | 
						|
        )
 | 
						|
 | 
						|
        # ddim sampling parameters
 | 
						|
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
 | 
						|
            alphacums=alphas_cumprod.cpu(),
 | 
						|
            ddim_timesteps=self.ddim_timesteps,
 | 
						|
            eta=ddim_eta,
 | 
						|
            verbose=verbose,
 | 
						|
        )
 | 
						|
        self.register_buffer("ddim_sigmas", ddim_sigmas)
 | 
						|
        self.register_buffer("ddim_alphas", ddim_alphas)
 | 
						|
        self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
 | 
						|
        self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
 | 
						|
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
 | 
						|
            (1 - self.alphas_cumprod_prev)
 | 
						|
            / (1 - self.alphas_cumprod)
 | 
						|
            * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
 | 
						|
        )
 | 
						|
        self.register_buffer(
 | 
						|
            "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
 | 
						|
        )
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def sample(self, steps, conditioning, batch_size, shape):
 | 
						|
        self.make_schedule(ddim_num_steps=steps, ddim_eta=0, verbose=False)
 | 
						|
        # sampling
 | 
						|
        C, H, W = shape
 | 
						|
        size = (batch_size, C, H, W)
 | 
						|
 | 
						|
        # samples: 1,3,128,128
 | 
						|
        return self.ddim_sampling(
 | 
						|
            conditioning,
 | 
						|
            size,
 | 
						|
            quantize_denoised=False,
 | 
						|
            ddim_use_original_steps=False,
 | 
						|
            noise_dropout=0,
 | 
						|
            temperature=1.0,
 | 
						|
        )
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def ddim_sampling(
 | 
						|
        self,
 | 
						|
        cond,
 | 
						|
        shape,
 | 
						|
        ddim_use_original_steps=False,
 | 
						|
        quantize_denoised=False,
 | 
						|
        temperature=1.0,
 | 
						|
        noise_dropout=0.0,
 | 
						|
    ):
 | 
						|
        device = self.model.betas.device
 | 
						|
        b = shape[0]
 | 
						|
        img = torch.randn(shape, device=device, dtype=cond.dtype)
 | 
						|
        timesteps = (
 | 
						|
            self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
 | 
						|
        )
 | 
						|
 | 
						|
        time_range = (
 | 
						|
            reversed(range(0, timesteps))
 | 
						|
            if ddim_use_original_steps
 | 
						|
            else np.flip(timesteps)
 | 
						|
        )
 | 
						|
        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
 | 
						|
        logger.info(f"Running DDIM Sampling with {total_steps} timesteps")
 | 
						|
 | 
						|
        iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
 | 
						|
 | 
						|
        for i, step in enumerate(iterator):
 | 
						|
            index = total_steps - i - 1
 | 
						|
            ts = torch.full((b,), step, device=device, dtype=torch.long)
 | 
						|
 | 
						|
            outs = self.p_sample_ddim(
 | 
						|
                img,
 | 
						|
                cond,
 | 
						|
                ts,
 | 
						|
                index=index,
 | 
						|
                use_original_steps=ddim_use_original_steps,
 | 
						|
                quantize_denoised=quantize_denoised,
 | 
						|
                temperature=temperature,
 | 
						|
                noise_dropout=noise_dropout,
 | 
						|
            )
 | 
						|
            img, _ = outs
 | 
						|
 | 
						|
        return img
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def p_sample_ddim(
 | 
						|
        self,
 | 
						|
        x,
 | 
						|
        c,
 | 
						|
        t,
 | 
						|
        index,
 | 
						|
        repeat_noise=False,
 | 
						|
        use_original_steps=False,
 | 
						|
        quantize_denoised=False,
 | 
						|
        temperature=1.0,
 | 
						|
        noise_dropout=0.0,
 | 
						|
    ):
 | 
						|
        b, *_, device = *x.shape, x.device
 | 
						|
        e_t = self.model.apply_model(x, t, c)
 | 
						|
 | 
						|
        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
 | 
						|
        alphas_prev = (
 | 
						|
            self.model.alphas_cumprod_prev
 | 
						|
            if use_original_steps
 | 
						|
            else self.ddim_alphas_prev
 | 
						|
        )
 | 
						|
        sqrt_one_minus_alphas = (
 | 
						|
            self.model.sqrt_one_minus_alphas_cumprod
 | 
						|
            if use_original_steps
 | 
						|
            else self.ddim_sqrt_one_minus_alphas
 | 
						|
        )
 | 
						|
        sigmas = (
 | 
						|
            self.model.ddim_sigmas_for_original_num_steps
 | 
						|
            if use_original_steps
 | 
						|
            else self.ddim_sigmas
 | 
						|
        )
 | 
						|
        # select parameters corresponding to the currently considered timestep
 | 
						|
        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
 | 
						|
        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
 | 
						|
        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
 | 
						|
        sqrt_one_minus_at = torch.full(
 | 
						|
            (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
 | 
						|
        )
 | 
						|
 | 
						|
        # current prediction for x_0
 | 
						|
        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
 | 
						|
        if quantize_denoised:  # 没用
 | 
						|
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
 | 
						|
        # direction pointing to x_t
 | 
						|
        dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
 | 
						|
        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
 | 
						|
        if noise_dropout > 0.0:  # 没用
 | 
						|
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
 | 
						|
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
 | 
						|
        return x_prev, pred_x0
 |