65 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
import PIL.Image
 | 
						|
import cv2
 | 
						|
import torch
 | 
						|
from loguru import logger
 | 
						|
 | 
						|
from iopaint.const import INSTRUCT_PIX2PIX_NAME
 | 
						|
from .base import DiffusionInpaintModel
 | 
						|
from iopaint.schema import InpaintRequest
 | 
						|
from .utils import get_torch_dtype, enable_low_mem, is_local_files_only
 | 
						|
 | 
						|
 | 
						|
class InstructPix2Pix(DiffusionInpaintModel):
 | 
						|
    name = INSTRUCT_PIX2PIX_NAME
 | 
						|
    pad_mod = 8
 | 
						|
    min_size = 512
 | 
						|
 | 
						|
    def init_model(self, device: torch.device, **kwargs):
 | 
						|
        from diffusers import StableDiffusionInstructPix2PixPipeline
 | 
						|
 | 
						|
        use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
 | 
						|
 | 
						|
        model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
 | 
						|
        if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
 | 
						|
            logger.info("Disable Stable Diffusion Model NSFW checker")
 | 
						|
            model_kwargs.update(
 | 
						|
                dict(
 | 
						|
                    safety_checker=None,
 | 
						|
                    feature_extractor=None,
 | 
						|
                    requires_safety_checker=False,
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
        self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
 | 
						|
            self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs
 | 
						|
        )
 | 
						|
        enable_low_mem(self.model, kwargs.get("low_mem", False))
 | 
						|
 | 
						|
        if kwargs.get("cpu_offload", False) and use_gpu:
 | 
						|
            logger.info("Enable sequential cpu offload")
 | 
						|
            self.model.enable_sequential_cpu_offload(gpu_id=0)
 | 
						|
        else:
 | 
						|
            self.model = self.model.to(device)
 | 
						|
 | 
						|
    def forward(self, image, mask, config: InpaintRequest):
 | 
						|
        """Input image and output image have same size
 | 
						|
        image: [H, W, C] RGB
 | 
						|
        mask: [H, W, 1] 255 means area to repaint
 | 
						|
        return: BGR IMAGE
 | 
						|
        edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0]
 | 
						|
        """
 | 
						|
        output = self.model(
 | 
						|
            image=PIL.Image.fromarray(image),
 | 
						|
            prompt=config.prompt,
 | 
						|
            negative_prompt=config.negative_prompt,
 | 
						|
            num_inference_steps=config.sd_steps,
 | 
						|
            image_guidance_scale=config.p2p_image_guidance_scale,
 | 
						|
            guidance_scale=config.sd_guidance_scale,
 | 
						|
            output_type="np",
 | 
						|
            generator=torch.manual_seed(config.sd_seed),
 | 
						|
        ).images[0]
 | 
						|
 | 
						|
        output = (output * 255).round().astype("uint8")
 | 
						|
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
 | 
						|
        return output
 |