1776 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			1776 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			Python
		
	
	
	
# Copyright 2023 The HuggingFace Team. All rights reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
 | 
						|
 | 
						|
import inspect
 | 
						|
import warnings
 | 
						|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import PIL.Image
 | 
						|
import torch
 | 
						|
import torch.nn.functional as F
 | 
						|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
 | 
						|
 | 
						|
from diffusers.image_processor import VaeImageProcessor
 | 
						|
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
 | 
						|
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
 | 
						|
from diffusers.schedulers import KarrasDiffusionSchedulers
 | 
						|
from diffusers.utils import (
 | 
						|
    is_accelerate_available,
 | 
						|
    is_accelerate_version,
 | 
						|
    logging,
 | 
						|
    replace_example_docstring,
 | 
						|
)
 | 
						|
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module
 | 
						|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
 | 
						|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
 | 
						|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
 | 
						|
from diffusers.pipelines.controlnet import MultiControlNetModel
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
 | 
						|
 | 
						|
 | 
						|
EXAMPLE_DOC_STRING = """
 | 
						|
    Examples:
 | 
						|
        ```py
 | 
						|
        >>> # !pip install transformers accelerate
 | 
						|
        >>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
 | 
						|
        >>> from diffusers.utils import load_image
 | 
						|
        >>> import numpy as np
 | 
						|
        >>> import torch
 | 
						|
 | 
						|
        >>> init_image = load_image(
 | 
						|
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
 | 
						|
        ... )
 | 
						|
        >>> init_image = init_image.resize((512, 512))
 | 
						|
 | 
						|
        >>> generator = torch.Generator(device="cpu").manual_seed(1)
 | 
						|
 | 
						|
        >>> mask_image = load_image(
 | 
						|
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
 | 
						|
        ... )
 | 
						|
        >>> mask_image = mask_image.resize((512, 512))
 | 
						|
 | 
						|
 | 
						|
        >>> def make_inpaint_condition(image, image_mask):
 | 
						|
        ...     image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
 | 
						|
        ...     image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
 | 
						|
 | 
						|
        ...     assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
 | 
						|
        ...     image[image_mask > 0.5] = -1.0  # set as masked pixel
 | 
						|
        ...     image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
 | 
						|
        ...     image = torch.from_numpy(image)
 | 
						|
        ...     return image
 | 
						|
 | 
						|
 | 
						|
        >>> control_image = make_inpaint_condition(init_image, mask_image)
 | 
						|
 | 
						|
        >>> controlnet = ControlNetModel.from_pretrained(
 | 
						|
        ...     "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
 | 
						|
        ... )
 | 
						|
        >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
 | 
						|
        ...     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
 | 
						|
        ... )
 | 
						|
 | 
						|
        >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
 | 
						|
        >>> pipe.enable_model_cpu_offload()
 | 
						|
 | 
						|
        >>> # generate image
 | 
						|
        >>> image = pipe(
 | 
						|
        ...     "a handsome man with ray-ban sunglasses",
 | 
						|
        ...     num_inference_steps=20,
 | 
						|
        ...     generator=generator,
 | 
						|
        ...     eta=1.0,
 | 
						|
        ...     image=init_image,
 | 
						|
        ...     mask_image=mask_image,
 | 
						|
        ...     control_image=control_image,
 | 
						|
        ... ).images[0]
 | 
						|
        ```
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image
 | 
						|
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
 | 
						|
    """
 | 
						|
    Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
 | 
						|
    converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
 | 
						|
    ``image`` and ``1`` for the ``mask``.
 | 
						|
 | 
						|
    The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
 | 
						|
    binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
 | 
						|
 | 
						|
    Args:
 | 
						|
        image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
 | 
						|
            It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
 | 
						|
            ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
 | 
						|
        mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
 | 
						|
            It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
 | 
						|
            ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
 | 
						|
 | 
						|
 | 
						|
    Raises:
 | 
						|
        ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
 | 
						|
        should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
 | 
						|
        TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
 | 
						|
            (ot the other way around).
 | 
						|
 | 
						|
    Returns:
 | 
						|
        tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
 | 
						|
            dimensions: ``batch x channels x height x width``.
 | 
						|
    """
 | 
						|
 | 
						|
    if image is None:
 | 
						|
        raise ValueError("`image` input cannot be undefined.")
 | 
						|
 | 
						|
    if mask is None:
 | 
						|
        raise ValueError("`mask_image` input cannot be undefined.")
 | 
						|
 | 
						|
    if isinstance(image, torch.Tensor):
 | 
						|
        if not isinstance(mask, torch.Tensor):
 | 
						|
            raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
 | 
						|
 | 
						|
        # Batch single image
 | 
						|
        if image.ndim == 3:
 | 
						|
            assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
 | 
						|
            image = image.unsqueeze(0)
 | 
						|
 | 
						|
        # Batch and add channel dim for single mask
 | 
						|
        if mask.ndim == 2:
 | 
						|
            mask = mask.unsqueeze(0).unsqueeze(0)
 | 
						|
 | 
						|
        # Batch single mask or add channel dim
 | 
						|
        if mask.ndim == 3:
 | 
						|
            # Single batched mask, no channel dim or single mask not batched but channel dim
 | 
						|
            if mask.shape[0] == 1:
 | 
						|
                mask = mask.unsqueeze(0)
 | 
						|
 | 
						|
            # Batched masks no channel dim
 | 
						|
            else:
 | 
						|
                mask = mask.unsqueeze(1)
 | 
						|
 | 
						|
        assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
 | 
						|
        assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
 | 
						|
        assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
 | 
						|
 | 
						|
        # Check image is in [-1, 1]
 | 
						|
        if image.min() < -1 or image.max() > 1:
 | 
						|
            raise ValueError("Image should be in [-1, 1] range")
 | 
						|
 | 
						|
        # Check mask is in [0, 1]
 | 
						|
        if mask.min() < 0 or mask.max() > 1:
 | 
						|
            raise ValueError("Mask should be in [0, 1] range")
 | 
						|
 | 
						|
        # Binarize mask
 | 
						|
        mask[mask < 0.5] = 0
 | 
						|
        mask[mask >= 0.5] = 1
 | 
						|
 | 
						|
        # Image as float32
 | 
						|
        image = image.to(dtype=torch.float32)
 | 
						|
    elif isinstance(mask, torch.Tensor):
 | 
						|
        raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
 | 
						|
    else:
 | 
						|
        # preprocess image
 | 
						|
        if isinstance(image, (PIL.Image.Image, np.ndarray)):
 | 
						|
            image = [image]
 | 
						|
        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
 | 
						|
            # resize all images w.r.t passed height an width
 | 
						|
            image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
 | 
						|
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
 | 
						|
            image = np.concatenate(image, axis=0)
 | 
						|
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
 | 
						|
            image = np.concatenate([i[None, :] for i in image], axis=0)
 | 
						|
 | 
						|
        image = image.transpose(0, 3, 1, 2)
 | 
						|
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
 | 
						|
 | 
						|
        # preprocess mask
 | 
						|
        if isinstance(mask, (PIL.Image.Image, np.ndarray)):
 | 
						|
            mask = [mask]
 | 
						|
 | 
						|
        if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
 | 
						|
            mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
 | 
						|
            mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
 | 
						|
            mask = mask.astype(np.float32) / 255.0
 | 
						|
        elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
 | 
						|
            mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
 | 
						|
 | 
						|
        mask[mask < 0.5] = 0
 | 
						|
        mask[mask >= 0.5] = 1
 | 
						|
        mask = torch.from_numpy(mask)
 | 
						|
 | 
						|
    masked_image = image * (mask < 0.5)
 | 
						|
 | 
						|
    # n.b. ensure backwards compatibility as old function does not return image
 | 
						|
    if return_image:
 | 
						|
        return mask, masked_image, image
 | 
						|
 | 
						|
    return mask, masked_image
 | 
						|
 | 
						|
 | 
						|
class StableDiffusionControlNetInpaintPipeline(
 | 
						|
    DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
 | 
						|
):
 | 
						|
    r"""
 | 
						|
    Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
 | 
						|
 | 
						|
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
 | 
						|
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
 | 
						|
 | 
						|
    In addition the pipeline inherits the following loading methods:
 | 
						|
        - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
 | 
						|
 | 
						|
    <Tip>
 | 
						|
 | 
						|
    This pipeline can be used both with checkpoints that have been specifically fine-tuned for inpainting, such as
 | 
						|
    [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)
 | 
						|
     as well as default text-to-image stable diffusion checkpoints, such as
 | 
						|
     [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
 | 
						|
    Default text-to-image stable diffusion checkpoints might be preferable for controlnets that have been fine-tuned on
 | 
						|
    those, such as [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
 | 
						|
 | 
						|
    </Tip>
 | 
						|
 | 
						|
    Args:
 | 
						|
        vae ([`AutoencoderKL`]):
 | 
						|
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
 | 
						|
        text_encoder ([`CLIPTextModel`]):
 | 
						|
            Frozen text-encoder. Stable Diffusion uses the text portion of
 | 
						|
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
 | 
						|
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
 | 
						|
        tokenizer (`CLIPTokenizer`):
 | 
						|
            Tokenizer of class
 | 
						|
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
 | 
						|
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
 | 
						|
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
 | 
						|
            Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
 | 
						|
            as a list, the outputs from each ControlNet are added together to create one combined additional
 | 
						|
            conditioning.
 | 
						|
        scheduler ([`SchedulerMixin`]):
 | 
						|
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
 | 
						|
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
 | 
						|
        safety_checker ([`StableDiffusionSafetyChecker`]):
 | 
						|
            Classification module that estimates whether generated images could be considered offensive or harmful.
 | 
						|
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
 | 
						|
        feature_extractor ([`CLIPImageProcessor`]):
 | 
						|
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
 | 
						|
    """
 | 
						|
    _optional_components = ["safety_checker", "feature_extractor"]
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vae: AutoencoderKL,
 | 
						|
        text_encoder: CLIPTextModel,
 | 
						|
        tokenizer: CLIPTokenizer,
 | 
						|
        unet: UNet2DConditionModel,
 | 
						|
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
 | 
						|
        scheduler: KarrasDiffusionSchedulers,
 | 
						|
        safety_checker: StableDiffusionSafetyChecker,
 | 
						|
        feature_extractor: CLIPImageProcessor,
 | 
						|
        requires_safety_checker: bool = True,
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
 | 
						|
        if safety_checker is None and requires_safety_checker:
 | 
						|
            logger.warning(
 | 
						|
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
 | 
						|
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
 | 
						|
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
 | 
						|
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
 | 
						|
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
 | 
						|
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
 | 
						|
            )
 | 
						|
 | 
						|
        if safety_checker is not None and feature_extractor is None:
 | 
						|
            raise ValueError(
 | 
						|
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
 | 
						|
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
 | 
						|
            )
 | 
						|
 | 
						|
        if isinstance(controlnet, (list, tuple)):
 | 
						|
            controlnet = MultiControlNetModel(controlnet)
 | 
						|
 | 
						|
        self.register_modules(
 | 
						|
            vae=vae,
 | 
						|
            text_encoder=text_encoder,
 | 
						|
            tokenizer=tokenizer,
 | 
						|
            unet=unet,
 | 
						|
            controlnet=controlnet,
 | 
						|
            scheduler=scheduler,
 | 
						|
            safety_checker=safety_checker,
 | 
						|
            feature_extractor=feature_extractor,
 | 
						|
        )
 | 
						|
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
 | 
						|
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
 | 
						|
        self.control_image_processor = VaeImageProcessor(
 | 
						|
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
 | 
						|
        )
 | 
						|
        self.register_to_config(requires_safety_checker=requires_safety_checker)
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
 | 
						|
    def enable_vae_slicing(self):
 | 
						|
        r"""
 | 
						|
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
 | 
						|
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
 | 
						|
        """
 | 
						|
        self.vae.enable_slicing()
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
 | 
						|
    def disable_vae_slicing(self):
 | 
						|
        r"""
 | 
						|
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
 | 
						|
        computing decoding in one step.
 | 
						|
        """
 | 
						|
        self.vae.disable_slicing()
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
 | 
						|
    def enable_vae_tiling(self):
 | 
						|
        r"""
 | 
						|
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
 | 
						|
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
 | 
						|
        processing larger images.
 | 
						|
        """
 | 
						|
        self.vae.enable_tiling()
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
 | 
						|
    def disable_vae_tiling(self):
 | 
						|
        r"""
 | 
						|
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
 | 
						|
        computing decoding in one step.
 | 
						|
        """
 | 
						|
        self.vae.disable_tiling()
 | 
						|
 | 
						|
    def enable_model_cpu_offload(self, gpu_id=0):
 | 
						|
        r"""
 | 
						|
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
 | 
						|
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
 | 
						|
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
 | 
						|
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
 | 
						|
        """
 | 
						|
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
 | 
						|
            from accelerate import cpu_offload_with_hook
 | 
						|
        else:
 | 
						|
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
 | 
						|
 | 
						|
        device = torch.device(f"cuda:{gpu_id}")
 | 
						|
 | 
						|
        hook = None
 | 
						|
        for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
 | 
						|
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
 | 
						|
 | 
						|
        if self.safety_checker is not None:
 | 
						|
            # the safety checker can offload the vae again
 | 
						|
            _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
 | 
						|
 | 
						|
        # control net hook has be manually offloaded as it alternates with unet
 | 
						|
        cpu_offload_with_hook(self.controlnet, device)
 | 
						|
 | 
						|
        # We'll offload the last model manually.
 | 
						|
        self.final_offload_hook = hook
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
 | 
						|
    def _encode_prompt(
 | 
						|
        self,
 | 
						|
        promptA,
 | 
						|
        promptB,
 | 
						|
        t,
 | 
						|
        device,
 | 
						|
        num_images_per_prompt,
 | 
						|
        do_classifier_free_guidance,
 | 
						|
        negative_promptA=None,
 | 
						|
        negative_promptB=None,
 | 
						|
        t_nag = None,
 | 
						|
        prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        lora_scale: Optional[float] = None,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Encodes the prompt into text encoder hidden states.
 | 
						|
 | 
						|
        Args:
 | 
						|
             prompt (`str` or `List[str]`, *optional*):
 | 
						|
                prompt to be encoded
 | 
						|
            device: (`torch.device`):
 | 
						|
                torch device
 | 
						|
            num_images_per_prompt (`int`):
 | 
						|
                number of images that should be generated per prompt
 | 
						|
            do_classifier_free_guidance (`bool`):
 | 
						|
                whether to use classifier free guidance or not
 | 
						|
            negative_prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
 | 
						|
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
 | 
						|
                less than `1`).
 | 
						|
            prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
 | 
						|
                provided, text embeddings will be generated from `prompt` input argument.
 | 
						|
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
 | 
						|
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
 | 
						|
                argument.
 | 
						|
            lora_scale (`float`, *optional*):
 | 
						|
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
 | 
						|
        """
 | 
						|
        # set lora scale so that monkey patched LoRA
 | 
						|
        # function of text encoder can correctly access it
 | 
						|
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
 | 
						|
            self._lora_scale = lora_scale
 | 
						|
        
 | 
						|
        prompt = promptA
 | 
						|
        negative_prompt = negative_promptA
 | 
						|
 | 
						|
        if promptA is not None and isinstance(promptA, str):
 | 
						|
            batch_size = 1
 | 
						|
        elif promptA is not None and isinstance(promptA, list):
 | 
						|
            batch_size = len(promptA)
 | 
						|
        else:
 | 
						|
            batch_size = prompt_embeds.shape[0]
 | 
						|
 | 
						|
        if prompt_embeds is None:
 | 
						|
            # textual inversion: procecss multi-vector tokens if necessary
 | 
						|
            if isinstance(self, TextualInversionLoaderMixin):
 | 
						|
                promptA = self.maybe_convert_prompt(promptA, self.tokenizer)
 | 
						|
 | 
						|
            text_inputsA = self.tokenizer(
 | 
						|
                promptA,
 | 
						|
                padding="max_length",
 | 
						|
                max_length=self.tokenizer.model_max_length,
 | 
						|
                truncation=True,
 | 
						|
                return_tensors="pt",
 | 
						|
            )
 | 
						|
            text_inputsB = self.tokenizer(
 | 
						|
                promptB,
 | 
						|
                padding="max_length",
 | 
						|
                max_length=self.tokenizer.model_max_length,
 | 
						|
                truncation=True,
 | 
						|
                return_tensors="pt",
 | 
						|
            )
 | 
						|
            text_input_idsA = text_inputsA.input_ids
 | 
						|
            text_input_idsB = text_inputsB.input_ids
 | 
						|
            untruncated_ids = self.tokenizer(promptA, padding="longest", return_tensors="pt").input_ids
 | 
						|
 | 
						|
            if untruncated_ids.shape[-1] >= text_input_idsA.shape[-1] and not torch.equal(
 | 
						|
                text_input_idsA, untruncated_ids
 | 
						|
            ):
 | 
						|
                removed_text = self.tokenizer.batch_decode(
 | 
						|
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
 | 
						|
                )
 | 
						|
                logger.warning(
 | 
						|
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
 | 
						|
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
 | 
						|
                )
 | 
						|
 | 
						|
            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
 | 
						|
                attention_mask = text_inputsA.attention_mask.to(device)
 | 
						|
            else:
 | 
						|
                attention_mask = None
 | 
						|
 | 
						|
            # print("text_input_idsA: ",text_input_idsA)
 | 
						|
            # print("text_input_idsB: ",text_input_idsB)
 | 
						|
            # print('t: ',t)
 | 
						|
 | 
						|
            prompt_embedsA = self.text_encoder(
 | 
						|
                text_input_idsA.to(device),
 | 
						|
                attention_mask=attention_mask,
 | 
						|
            )
 | 
						|
            prompt_embedsA = prompt_embedsA[0]
 | 
						|
 | 
						|
            prompt_embedsB = self.text_encoder(
 | 
						|
                text_input_idsB.to(device),
 | 
						|
                attention_mask=attention_mask,
 | 
						|
            )
 | 
						|
            prompt_embedsB = prompt_embedsB[0]
 | 
						|
            prompt_embeds = prompt_embedsA*(t)+(1-t)*prompt_embedsB
 | 
						|
            # print("prompt_embeds: ",prompt_embeds)
 | 
						|
 | 
						|
        if self.text_encoder is not None:
 | 
						|
            prompt_embeds_dtype = self.text_encoder.dtype
 | 
						|
        elif self.unet is not None:
 | 
						|
            prompt_embeds_dtype = self.unet.dtype
 | 
						|
        else:
 | 
						|
            prompt_embeds_dtype = prompt_embeds.dtype
 | 
						|
 | 
						|
        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
 | 
						|
 | 
						|
        bs_embed, seq_len, _ = prompt_embeds.shape
 | 
						|
        # duplicate text embeddings for each generation per prompt, using mps friendly method
 | 
						|
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
 | 
						|
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
 | 
						|
 | 
						|
        # get unconditional embeddings for classifier free guidance
 | 
						|
        if do_classifier_free_guidance and negative_prompt_embeds is None:
 | 
						|
            uncond_tokensA: List[str]
 | 
						|
            uncond_tokensB: List[str]
 | 
						|
            if negative_prompt is None:
 | 
						|
                uncond_tokensA = [""] * batch_size
 | 
						|
                uncond_tokensB = [""] * batch_size
 | 
						|
            elif prompt is not None and type(prompt) is not type(negative_prompt):
 | 
						|
                raise TypeError(
 | 
						|
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
 | 
						|
                    f" {type(prompt)}."
 | 
						|
                )
 | 
						|
            elif isinstance(negative_prompt, str):
 | 
						|
                uncond_tokensA = [negative_promptA]
 | 
						|
                uncond_tokensB = [negative_promptB]
 | 
						|
            elif batch_size != len(negative_prompt):
 | 
						|
                raise ValueError(
 | 
						|
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
 | 
						|
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
 | 
						|
                    " the batch size of `prompt`."
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                uncond_tokensA = negative_promptA
 | 
						|
                uncond_tokensB = negative_promptB
 | 
						|
 | 
						|
            # textual inversion: procecss multi-vector tokens if necessary
 | 
						|
            if isinstance(self, TextualInversionLoaderMixin):
 | 
						|
                uncond_tokensA = self.maybe_convert_prompt(uncond_tokensA, self.tokenizer)
 | 
						|
                uncond_tokensB = self.maybe_convert_prompt(uncond_tokensB, self.tokenizer)
 | 
						|
 | 
						|
            max_length = prompt_embeds.shape[1]
 | 
						|
            uncond_inputA = self.tokenizer(
 | 
						|
                uncond_tokensA,
 | 
						|
                padding="max_length",
 | 
						|
                max_length=max_length,
 | 
						|
                truncation=True,
 | 
						|
                return_tensors="pt",
 | 
						|
            )
 | 
						|
            uncond_inputB = self.tokenizer(
 | 
						|
                uncond_tokensB,
 | 
						|
                padding="max_length",
 | 
						|
                max_length=max_length,
 | 
						|
                truncation=True,
 | 
						|
                return_tensors="pt",
 | 
						|
            )
 | 
						|
 | 
						|
            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
 | 
						|
                attention_mask = uncond_inputA.attention_mask.to(device)
 | 
						|
            else:
 | 
						|
                attention_mask = None
 | 
						|
 | 
						|
            negative_prompt_embedsA = self.text_encoder(
 | 
						|
                uncond_inputA.input_ids.to(device),
 | 
						|
                attention_mask=attention_mask,
 | 
						|
            )
 | 
						|
            negative_prompt_embedsB = self.text_encoder(
 | 
						|
                uncond_inputB.input_ids.to(device),
 | 
						|
                attention_mask=attention_mask,
 | 
						|
            )
 | 
						|
            negative_prompt_embeds = negative_prompt_embedsA[0]*(t_nag)+(1-t_nag)*negative_prompt_embedsB[0]
 | 
						|
 | 
						|
            # negative_prompt_embeds = negative_prompt_embeds[0]
 | 
						|
 | 
						|
        if do_classifier_free_guidance:
 | 
						|
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
 | 
						|
            seq_len = negative_prompt_embeds.shape[1]
 | 
						|
 | 
						|
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
 | 
						|
 | 
						|
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
 | 
						|
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
 | 
						|
 | 
						|
            # For classifier free guidance, we need to do two forward passes.
 | 
						|
            # Here we concatenate the unconditional and text embeddings into a single batch
 | 
						|
            # to avoid doing two forward passes
 | 
						|
            # print("prompt_embeds: ",prompt_embeds)
 | 
						|
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
 | 
						|
 | 
						|
        return prompt_embeds
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
 | 
						|
    def run_safety_checker(self, image, device, dtype):
 | 
						|
        if self.safety_checker is None:
 | 
						|
            has_nsfw_concept = None
 | 
						|
        else:
 | 
						|
            if torch.is_tensor(image):
 | 
						|
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
 | 
						|
            else:
 | 
						|
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
 | 
						|
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
 | 
						|
            image, has_nsfw_concept = self.safety_checker(
 | 
						|
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
 | 
						|
            )
 | 
						|
        return image, has_nsfw_concept
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
 | 
						|
    def decode_latents(self, latents):
 | 
						|
        warnings.warn(
 | 
						|
            "The decode_latents method is deprecated and will be removed in a future version. Please"
 | 
						|
            " use VaeImageProcessor instead",
 | 
						|
            FutureWarning,
 | 
						|
        )
 | 
						|
        latents = 1 / self.vae.config.scaling_factor * latents
 | 
						|
        image = self.vae.decode(latents, return_dict=False)[0]
 | 
						|
        image = (image / 2 + 0.5).clamp(0, 1)
 | 
						|
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
 | 
						|
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
 | 
						|
        return image
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
 | 
						|
    def prepare_extra_step_kwargs(self, generator, eta):
 | 
						|
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
 | 
						|
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
 | 
						|
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
 | 
						|
        # and should be between [0, 1]
 | 
						|
 | 
						|
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
 | 
						|
        extra_step_kwargs = {}
 | 
						|
        if accepts_eta:
 | 
						|
            extra_step_kwargs["eta"] = eta
 | 
						|
 | 
						|
        # check if the scheduler accepts generator
 | 
						|
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
 | 
						|
        if accepts_generator:
 | 
						|
            extra_step_kwargs["generator"] = generator
 | 
						|
        return extra_step_kwargs
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
 | 
						|
    def get_timesteps(self, num_inference_steps, strength, device):
 | 
						|
        # get the original timestep using init_timestep
 | 
						|
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
 | 
						|
 | 
						|
        t_start = max(num_inference_steps - init_timestep, 0)
 | 
						|
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
 | 
						|
 | 
						|
        return timesteps, num_inference_steps - t_start
 | 
						|
 | 
						|
    def check_inputs(
 | 
						|
        self,
 | 
						|
        prompt,
 | 
						|
        image,
 | 
						|
        height,
 | 
						|
        width,
 | 
						|
        callback_steps,
 | 
						|
        negative_prompt=None,
 | 
						|
        prompt_embeds=None,
 | 
						|
        negative_prompt_embeds=None,
 | 
						|
        controlnet_conditioning_scale=1.0,
 | 
						|
        control_guidance_start=0.0,
 | 
						|
        control_guidance_end=1.0,
 | 
						|
    ):
 | 
						|
        if height % 8 != 0 or width % 8 != 0:
 | 
						|
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
 | 
						|
 | 
						|
        if (callback_steps is None) or (
 | 
						|
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
 | 
						|
        ):
 | 
						|
            raise ValueError(
 | 
						|
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
 | 
						|
                f" {type(callback_steps)}."
 | 
						|
            )
 | 
						|
 | 
						|
        if prompt is not None and prompt_embeds is not None:
 | 
						|
            raise ValueError(
 | 
						|
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
 | 
						|
                " only forward one of the two."
 | 
						|
            )
 | 
						|
        elif prompt is None and prompt_embeds is None:
 | 
						|
            raise ValueError(
 | 
						|
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
 | 
						|
            )
 | 
						|
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
 | 
						|
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
 | 
						|
 | 
						|
        if negative_prompt is not None and negative_prompt_embeds is not None:
 | 
						|
            raise ValueError(
 | 
						|
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
 | 
						|
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
 | 
						|
            )
 | 
						|
 | 
						|
        if prompt_embeds is not None and negative_prompt_embeds is not None:
 | 
						|
            if prompt_embeds.shape != negative_prompt_embeds.shape:
 | 
						|
                raise ValueError(
 | 
						|
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
 | 
						|
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
 | 
						|
                    f" {negative_prompt_embeds.shape}."
 | 
						|
                )
 | 
						|
 | 
						|
        # `prompt` needs more sophisticated handling when there are multiple
 | 
						|
        # conditionings.
 | 
						|
        if isinstance(self.controlnet, MultiControlNetModel):
 | 
						|
            if isinstance(prompt, list):
 | 
						|
                logger.warning(
 | 
						|
                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
 | 
						|
                    " prompts. The conditionings will be fixed across the prompts."
 | 
						|
                )
 | 
						|
 | 
						|
        # Check `image`
 | 
						|
        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
 | 
						|
            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
 | 
						|
        )
 | 
						|
 | 
						|
        if (
 | 
						|
            isinstance(self.controlnet, ControlNetModel)
 | 
						|
            or is_compiled
 | 
						|
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
 | 
						|
        ):
 | 
						|
            self.check_image(image, prompt, prompt_embeds)
 | 
						|
        elif (
 | 
						|
            isinstance(self.controlnet, MultiControlNetModel)
 | 
						|
            or is_compiled
 | 
						|
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
 | 
						|
        ):
 | 
						|
            if not isinstance(image, list):
 | 
						|
                raise TypeError("For multiple controlnets: `image` must be type `list`")
 | 
						|
 | 
						|
            # When `image` is a nested list:
 | 
						|
            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
 | 
						|
            elif any(isinstance(i, list) for i in image):
 | 
						|
                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
 | 
						|
            elif len(image) != len(self.controlnet.nets):
 | 
						|
                raise ValueError(
 | 
						|
                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
 | 
						|
                )
 | 
						|
 | 
						|
            for image_ in image:
 | 
						|
                self.check_image(image_, prompt, prompt_embeds)
 | 
						|
        else:
 | 
						|
            assert False
 | 
						|
 | 
						|
        # Check `controlnet_conditioning_scale`
 | 
						|
        if (
 | 
						|
            isinstance(self.controlnet, ControlNetModel)
 | 
						|
            or is_compiled
 | 
						|
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
 | 
						|
        ):
 | 
						|
            if not isinstance(controlnet_conditioning_scale, float):
 | 
						|
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
 | 
						|
        elif (
 | 
						|
            isinstance(self.controlnet, MultiControlNetModel)
 | 
						|
            or is_compiled
 | 
						|
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
 | 
						|
        ):
 | 
						|
            if isinstance(controlnet_conditioning_scale, list):
 | 
						|
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
 | 
						|
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
 | 
						|
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
 | 
						|
                self.controlnet.nets
 | 
						|
            ):
 | 
						|
                raise ValueError(
 | 
						|
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
 | 
						|
                    " the same length as the number of controlnets"
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            assert False
 | 
						|
 | 
						|
        if len(control_guidance_start) != len(control_guidance_end):
 | 
						|
            raise ValueError(
 | 
						|
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
 | 
						|
            )
 | 
						|
 | 
						|
        if isinstance(self.controlnet, MultiControlNetModel):
 | 
						|
            if len(control_guidance_start) != len(self.controlnet.nets):
 | 
						|
                raise ValueError(
 | 
						|
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
 | 
						|
                )
 | 
						|
 | 
						|
        for start, end in zip(control_guidance_start, control_guidance_end):
 | 
						|
            if start >= end:
 | 
						|
                raise ValueError(
 | 
						|
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
 | 
						|
                )
 | 
						|
            if start < 0.0:
 | 
						|
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
 | 
						|
            if end > 1.0:
 | 
						|
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
 | 
						|
    def check_image(self, image, prompt, prompt_embeds):
 | 
						|
        image_is_pil = isinstance(image, PIL.Image.Image)
 | 
						|
        image_is_tensor = isinstance(image, torch.Tensor)
 | 
						|
        image_is_np = isinstance(image, np.ndarray)
 | 
						|
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
 | 
						|
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
 | 
						|
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
 | 
						|
 | 
						|
        if (
 | 
						|
            not image_is_pil
 | 
						|
            and not image_is_tensor
 | 
						|
            and not image_is_np
 | 
						|
            and not image_is_pil_list
 | 
						|
            and not image_is_tensor_list
 | 
						|
            and not image_is_np_list
 | 
						|
        ):
 | 
						|
            raise TypeError(
 | 
						|
                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
 | 
						|
            )
 | 
						|
 | 
						|
        if image_is_pil:
 | 
						|
            image_batch_size = 1
 | 
						|
        else:
 | 
						|
            image_batch_size = len(image)
 | 
						|
 | 
						|
        if prompt is not None and isinstance(prompt, str):
 | 
						|
            prompt_batch_size = 1
 | 
						|
        elif prompt is not None and isinstance(prompt, list):
 | 
						|
            prompt_batch_size = len(prompt)
 | 
						|
        elif prompt_embeds is not None:
 | 
						|
            prompt_batch_size = prompt_embeds.shape[0]
 | 
						|
 | 
						|
        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
 | 
						|
            raise ValueError(
 | 
						|
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
 | 
						|
            )
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
 | 
						|
    def prepare_control_image(
 | 
						|
        self,
 | 
						|
        image,
 | 
						|
        width,
 | 
						|
        height,
 | 
						|
        batch_size,
 | 
						|
        num_images_per_prompt,
 | 
						|
        device,
 | 
						|
        dtype,
 | 
						|
        do_classifier_free_guidance=False,
 | 
						|
        guess_mode=False,
 | 
						|
    ):
 | 
						|
        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
 | 
						|
        image_batch_size = image.shape[0]
 | 
						|
 | 
						|
        if image_batch_size == 1:
 | 
						|
            repeat_by = batch_size
 | 
						|
        else:
 | 
						|
            # image batch size is the same as prompt batch size
 | 
						|
            repeat_by = num_images_per_prompt
 | 
						|
 | 
						|
        image = image.repeat_interleave(repeat_by, dim=0)
 | 
						|
 | 
						|
        image = image.to(device=device, dtype=dtype)
 | 
						|
 | 
						|
        if do_classifier_free_guidance and not guess_mode:
 | 
						|
            image = torch.cat([image] * 2)
 | 
						|
 | 
						|
        return image
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
 | 
						|
    def prepare_latents(
 | 
						|
        self,
 | 
						|
        batch_size,
 | 
						|
        num_channels_latents,
 | 
						|
        height,
 | 
						|
        width,
 | 
						|
        dtype,
 | 
						|
        device,
 | 
						|
        generator,
 | 
						|
        latents=None,
 | 
						|
        image=None,
 | 
						|
        timestep=None,
 | 
						|
        is_strength_max=True,
 | 
						|
        return_noise=False,
 | 
						|
        return_image_latents=False,
 | 
						|
    ):
 | 
						|
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
 | 
						|
        if isinstance(generator, list) and len(generator) != batch_size:
 | 
						|
            raise ValueError(
 | 
						|
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
 | 
						|
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
 | 
						|
            )
 | 
						|
 | 
						|
        if (image is None or timestep is None) and not is_strength_max:
 | 
						|
            raise ValueError(
 | 
						|
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
 | 
						|
                "However, either the image or the noise timestep has not been provided."
 | 
						|
            )
 | 
						|
 | 
						|
        if return_image_latents or (latents is None and not is_strength_max):
 | 
						|
            image = image.to(device=device, dtype=dtype)
 | 
						|
            image_latents = self._encode_vae_image(image=image, generator=generator)
 | 
						|
 | 
						|
        if latents is None:
 | 
						|
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
 | 
						|
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
 | 
						|
            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
 | 
						|
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
 | 
						|
            latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
 | 
						|
        else:
 | 
						|
            noise = latents.to(device)
 | 
						|
            latents = noise * self.scheduler.init_noise_sigma
 | 
						|
 | 
						|
        outputs = (latents,)
 | 
						|
 | 
						|
        if return_noise:
 | 
						|
            outputs += (noise,)
 | 
						|
 | 
						|
        if return_image_latents:
 | 
						|
            outputs += (image_latents,)
 | 
						|
 | 
						|
        return outputs
 | 
						|
 | 
						|
    def _default_height_width(self, height, width, image):
 | 
						|
        # NOTE: It is possible that a list of images have different
 | 
						|
        # dimensions for each image, so just checking the first image
 | 
						|
        # is not _exactly_ correct, but it is simple.
 | 
						|
        while isinstance(image, list):
 | 
						|
            image = image[0]
 | 
						|
 | 
						|
        if height is None:
 | 
						|
            if isinstance(image, PIL.Image.Image):
 | 
						|
                height = image.height
 | 
						|
            elif isinstance(image, torch.Tensor):
 | 
						|
                height = image.shape[2]
 | 
						|
 | 
						|
            height = (height // 8) * 8  # round down to nearest multiple of 8
 | 
						|
 | 
						|
        if width is None:
 | 
						|
            if isinstance(image, PIL.Image.Image):
 | 
						|
                width = image.width
 | 
						|
            elif isinstance(image, torch.Tensor):
 | 
						|
                width = image.shape[3]
 | 
						|
 | 
						|
            width = (width // 8) * 8  # round down to nearest multiple of 8
 | 
						|
 | 
						|
        return height, width
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
 | 
						|
    def prepare_mask_latents(
 | 
						|
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
 | 
						|
    ):
 | 
						|
        # resize the mask to latents shape as we concatenate the mask to the latents
 | 
						|
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
 | 
						|
        # and half precision
 | 
						|
        mask = torch.nn.functional.interpolate(
 | 
						|
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
 | 
						|
        )
 | 
						|
        mask = mask.to(device=device, dtype=dtype)
 | 
						|
 | 
						|
        masked_image = masked_image.to(device=device, dtype=dtype)
 | 
						|
        masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
 | 
						|
 | 
						|
        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
 | 
						|
        if mask.shape[0] < batch_size:
 | 
						|
            if not batch_size % mask.shape[0] == 0:
 | 
						|
                raise ValueError(
 | 
						|
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
 | 
						|
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
 | 
						|
                    " of masks that you pass is divisible by the total requested batch size."
 | 
						|
                )
 | 
						|
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
 | 
						|
        if masked_image_latents.shape[0] < batch_size:
 | 
						|
            if not batch_size % masked_image_latents.shape[0] == 0:
 | 
						|
                raise ValueError(
 | 
						|
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
 | 
						|
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
 | 
						|
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
 | 
						|
                )
 | 
						|
            masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
 | 
						|
 | 
						|
        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
 | 
						|
        masked_image_latents = (
 | 
						|
            torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
 | 
						|
        )
 | 
						|
 | 
						|
        # aligning device to prevent device errors when concating it with the latent model input
 | 
						|
        masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
 | 
						|
        return mask, masked_image_latents
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
 | 
						|
    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
 | 
						|
        if isinstance(generator, list):
 | 
						|
            image_latents = [
 | 
						|
                self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
 | 
						|
                for i in range(image.shape[0])
 | 
						|
            ]
 | 
						|
            image_latents = torch.cat(image_latents, dim=0)
 | 
						|
        else:
 | 
						|
            image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
 | 
						|
 | 
						|
        image_latents = self.vae.config.scaling_factor * image_latents
 | 
						|
 | 
						|
        return image_latents
 | 
						|
    
 | 
						|
    @torch.no_grad()
 | 
						|
    def predict_woControl(
 | 
						|
        self,
 | 
						|
        promptA: Union[str, List[str]] = None,
 | 
						|
        promptB: Union[str, List[str]] = None,
 | 
						|
        image: Union[torch.FloatTensor, PIL.Image.Image] = None,
 | 
						|
        mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
 | 
						|
        height: Optional[int] = None,
 | 
						|
        width: Optional[int] = None,
 | 
						|
        strength: float = 1.0,
 | 
						|
        tradoff: float = 1.0,
 | 
						|
        tradoff_nag: float = 1.0,
 | 
						|
        num_inference_steps: int = 50,
 | 
						|
        guidance_scale: float = 7.5,
 | 
						|
        negative_promptA: Optional[Union[str, List[str]]] = None,
 | 
						|
        negative_promptB: Optional[Union[str, List[str]]] = None,
 | 
						|
        num_images_per_prompt: Optional[int] = 1,
 | 
						|
        eta: float = 0.0,
 | 
						|
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
 | 
						|
        latents: Optional[torch.FloatTensor] = None,
 | 
						|
        prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        output_type: Optional[str] = "pil",
 | 
						|
        return_dict: bool = True,
 | 
						|
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
 | 
						|
        callback_steps: int = 1,
 | 
						|
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
 | 
						|
        task_class: Union[torch.Tensor, float, int] = None,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        The call function to the pipeline for generation.
 | 
						|
 | 
						|
        Args:
 | 
						|
            prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
 | 
						|
            image (`PIL.Image.Image`):
 | 
						|
                `Image` or tensor representing an image batch to be inpainted (which parts of the image to be masked
 | 
						|
                out with `mask_image` and repainted according to `prompt`).
 | 
						|
            mask_image (`PIL.Image.Image`):
 | 
						|
                `Image` or tensor representing an image batch to mask `image`. White pixels in the mask are repainted
 | 
						|
                while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel
 | 
						|
                (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the
 | 
						|
                expected shape would be `(B, H, W, 1)`.
 | 
						|
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
 | 
						|
                The height in pixels of the generated image.
 | 
						|
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
 | 
						|
                The width in pixels of the generated image.
 | 
						|
            strength (`float`, *optional*, defaults to 1.0):
 | 
						|
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
 | 
						|
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
 | 
						|
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
 | 
						|
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
 | 
						|
                essentially ignores `image`.
 | 
						|
            num_inference_steps (`int`, *optional*, defaults to 50):
 | 
						|
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
 | 
						|
                expense of slower inference. This parameter is modulated by `strength`.
 | 
						|
            guidance_scale (`float`, *optional*, defaults to 7.5):
 | 
						|
                A higher guidance scale value encourages the model to generate images closely linked to the text
 | 
						|
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
 | 
						|
            negative_prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
 | 
						|
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
 | 
						|
            num_images_per_prompt (`int`, *optional*, defaults to 1):
 | 
						|
                The number of images to generate per prompt.
 | 
						|
            eta (`float`, *optional*, defaults to 0.0):
 | 
						|
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
 | 
						|
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
 | 
						|
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
 | 
						|
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
 | 
						|
                generation deterministic.
 | 
						|
            latents (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
 | 
						|
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
 | 
						|
                tensor is generated by sampling using the supplied random `generator`.
 | 
						|
            prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
 | 
						|
                provided, text embeddings are generated from the `prompt` input argument.
 | 
						|
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
 | 
						|
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
 | 
						|
            output_type (`str`, *optional*, defaults to `"pil"`):
 | 
						|
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
 | 
						|
            return_dict (`bool`, *optional*, defaults to `True`):
 | 
						|
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
 | 
						|
                plain tuple.
 | 
						|
            callback (`Callable`, *optional*):
 | 
						|
                A function that calls every `callback_steps` steps during inference. The function is called with the
 | 
						|
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
 | 
						|
            callback_steps (`int`, *optional*, defaults to 1):
 | 
						|
                The frequency at which the `callback` function is called. If not specified, the callback is called at
 | 
						|
                every step.
 | 
						|
            cross_attention_kwargs (`dict`, *optional*):
 | 
						|
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
 | 
						|
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
 | 
						|
 | 
						|
        Examples:
 | 
						|
 | 
						|
        ```py
 | 
						|
        >>> import PIL
 | 
						|
        >>> import requests
 | 
						|
        >>> import torch
 | 
						|
        >>> from io import BytesIO
 | 
						|
 | 
						|
        >>> from diffusers import StableDiffusionInpaintPipeline
 | 
						|
 | 
						|
 | 
						|
        >>> def download_image(url):
 | 
						|
        ...     response = requests.get(url)
 | 
						|
        ...     return PIL.Image.open(BytesIO(response.content)).convert("RGB")
 | 
						|
 | 
						|
 | 
						|
        >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
 | 
						|
        >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
 | 
						|
 | 
						|
        >>> init_image = download_image(img_url).resize((512, 512))
 | 
						|
        >>> mask_image = download_image(mask_url).resize((512, 512))
 | 
						|
 | 
						|
        >>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
 | 
						|
        ...     "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
 | 
						|
        ... )
 | 
						|
        >>> pipe = pipe.to("cuda")
 | 
						|
 | 
						|
        >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
 | 
						|
        >>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
 | 
						|
        ```
 | 
						|
 | 
						|
        Returns:
 | 
						|
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
 | 
						|
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
 | 
						|
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
 | 
						|
                second element is a list of `bool`s indicating whether the corresponding generated image contains
 | 
						|
                "not-safe-for-work" (nsfw) content.
 | 
						|
        """
 | 
						|
        # 0. Default height and width to unet
 | 
						|
        height = height or self.unet.config.sample_size * self.vae_scale_factor
 | 
						|
        width = width or self.unet.config.sample_size * self.vae_scale_factor
 | 
						|
        prompt = promptA
 | 
						|
        negative_prompt = negative_promptA
 | 
						|
        # 1. Check inputs
 | 
						|
        self.check_inputs(
 | 
						|
            prompt,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            strength,
 | 
						|
            callback_steps,
 | 
						|
            negative_prompt,
 | 
						|
            prompt_embeds,
 | 
						|
            negative_prompt_embeds,
 | 
						|
        )
 | 
						|
 | 
						|
        # 2. Define call parameters
 | 
						|
        if prompt is not None and isinstance(prompt, str):
 | 
						|
            batch_size = 1
 | 
						|
        elif prompt is not None and isinstance(prompt, list):
 | 
						|
            batch_size = len(prompt)
 | 
						|
        else:
 | 
						|
            batch_size = prompt_embeds.shape[0]
 | 
						|
 | 
						|
        device = self._execution_device
 | 
						|
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
 | 
						|
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
 | 
						|
        # corresponds to doing no classifier free guidance.
 | 
						|
        do_classifier_free_guidance = guidance_scale > 1.0
 | 
						|
 | 
						|
        # 3. Encode input prompt
 | 
						|
        text_encoder_lora_scale = (
 | 
						|
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
 | 
						|
        )
 | 
						|
        prompt_embeds = self._encode_prompt(
 | 
						|
            promptA,
 | 
						|
            promptB,
 | 
						|
            tradoff,
 | 
						|
            device,
 | 
						|
            num_images_per_prompt,
 | 
						|
            do_classifier_free_guidance,
 | 
						|
            negative_promptA,
 | 
						|
            negative_promptB,
 | 
						|
            tradoff_nag,
 | 
						|
            prompt_embeds=prompt_embeds,
 | 
						|
            negative_prompt_embeds=negative_prompt_embeds,
 | 
						|
            lora_scale=text_encoder_lora_scale,
 | 
						|
        )
 | 
						|
 | 
						|
        # 4. set timesteps
 | 
						|
        self.scheduler.set_timesteps(num_inference_steps, device=device)
 | 
						|
        timesteps, num_inference_steps = self.get_timesteps(
 | 
						|
            num_inference_steps=num_inference_steps, strength=strength, device=device
 | 
						|
        )
 | 
						|
        # check that number of inference steps is not < 1 - as this doesn't make sense
 | 
						|
        if num_inference_steps < 1:
 | 
						|
            raise ValueError(
 | 
						|
                f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
 | 
						|
                f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
 | 
						|
            )
 | 
						|
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
 | 
						|
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
 | 
						|
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
 | 
						|
        is_strength_max = strength == 1.0
 | 
						|
 | 
						|
        # 5. Preprocess mask and image
 | 
						|
        mask, masked_image, init_image = prepare_mask_and_masked_image(
 | 
						|
            image, mask_image, height, width, return_image=True
 | 
						|
        )
 | 
						|
        mask_condition = mask.clone()
 | 
						|
 | 
						|
        # 6. Prepare latent variables
 | 
						|
        num_channels_latents = self.vae.config.latent_channels
 | 
						|
        num_channels_unet = self.unet.config.in_channels
 | 
						|
        return_image_latents = num_channels_unet == 4
 | 
						|
 | 
						|
        latents_outputs = self.prepare_latents(
 | 
						|
            batch_size * num_images_per_prompt,
 | 
						|
            num_channels_latents,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            prompt_embeds.dtype,
 | 
						|
            device,
 | 
						|
            generator,
 | 
						|
            latents,
 | 
						|
            image=init_image,
 | 
						|
            timestep=latent_timestep,
 | 
						|
            is_strength_max=is_strength_max,
 | 
						|
            return_noise=True,
 | 
						|
            return_image_latents=return_image_latents,
 | 
						|
        )
 | 
						|
 | 
						|
        if return_image_latents:
 | 
						|
            latents, noise, image_latents = latents_outputs
 | 
						|
        else:
 | 
						|
            latents, noise = latents_outputs
 | 
						|
 | 
						|
        # 7. Prepare mask latent variables
 | 
						|
        mask, masked_image_latents = self.prepare_mask_latents(
 | 
						|
            mask,
 | 
						|
            masked_image,
 | 
						|
            batch_size * num_images_per_prompt,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            prompt_embeds.dtype,
 | 
						|
            device,
 | 
						|
            generator,
 | 
						|
            do_classifier_free_guidance,
 | 
						|
        )
 | 
						|
 | 
						|
        # 8. Check that sizes of mask, masked image and latents match
 | 
						|
        if num_channels_unet == 9:
 | 
						|
            # default case for runwayml/stable-diffusion-inpainting
 | 
						|
            num_channels_mask = mask.shape[1]
 | 
						|
            num_channels_masked_image = masked_image_latents.shape[1]
 | 
						|
            if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
 | 
						|
                raise ValueError(
 | 
						|
                    f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
 | 
						|
                    f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
 | 
						|
                    f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
 | 
						|
                    f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
 | 
						|
                    " `pipeline.unet` or your `mask_image` or `image` input."
 | 
						|
                )
 | 
						|
        elif num_channels_unet != 4:
 | 
						|
            raise ValueError(
 | 
						|
                f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
 | 
						|
            )
 | 
						|
 | 
						|
        # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
 | 
						|
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
 | 
						|
 | 
						|
        # 10. Denoising loop
 | 
						|
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
 | 
						|
        with self.progress_bar(total=num_inference_steps) as progress_bar:
 | 
						|
            for i, t in enumerate(timesteps):
 | 
						|
                # expand the latents if we are doing classifier free guidance
 | 
						|
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
 | 
						|
 | 
						|
                # concat latents, mask, masked_image_latents in the channel dimension
 | 
						|
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
 | 
						|
 | 
						|
                if num_channels_unet == 9:
 | 
						|
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
 | 
						|
 | 
						|
                # predict the noise residual
 | 
						|
                if task_class is not None:
 | 
						|
                    noise_pred = self.unet(
 | 
						|
                        sample = latent_model_input,
 | 
						|
                        timestep = t,
 | 
						|
                        encoder_hidden_states=prompt_embeds,
 | 
						|
                        cross_attention_kwargs=cross_attention_kwargs,
 | 
						|
                        return_dict=False,
 | 
						|
                        task_class = task_class,
 | 
						|
                    )[0]
 | 
						|
                else:
 | 
						|
                    noise_pred = self.unet(
 | 
						|
                        latent_model_input,
 | 
						|
                        t,
 | 
						|
                        encoder_hidden_states=prompt_embeds,
 | 
						|
                        cross_attention_kwargs=cross_attention_kwargs,
 | 
						|
                        return_dict=False,
 | 
						|
                    )[0]
 | 
						|
 | 
						|
                # perform guidance
 | 
						|
                if do_classifier_free_guidance:
 | 
						|
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
 | 
						|
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
 | 
						|
 | 
						|
                # compute the previous noisy sample x_t -> x_t-1
 | 
						|
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
 | 
						|
 | 
						|
                if num_channels_unet == 4:
 | 
						|
                    init_latents_proper = image_latents[:1]
 | 
						|
                    init_mask = mask[:1]
 | 
						|
 | 
						|
                    if i < len(timesteps) - 1:
 | 
						|
                        noise_timestep = timesteps[i + 1]
 | 
						|
                        init_latents_proper = self.scheduler.add_noise(
 | 
						|
                            init_latents_proper, noise, torch.tensor([noise_timestep])
 | 
						|
                        )
 | 
						|
 | 
						|
                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents
 | 
						|
 | 
						|
                # call the callback, if provided
 | 
						|
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
 | 
						|
                    progress_bar.update()
 | 
						|
                    if callback is not None and i % callback_steps == 0:
 | 
						|
                        callback(i, t, latents)
 | 
						|
 | 
						|
        if not output_type == "latent":
 | 
						|
            condition_kwargs = {}
 | 
						|
            if isinstance(self.vae, AsymmetricAutoencoderKL):
 | 
						|
                init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
 | 
						|
                init_image_condition = init_image.clone()
 | 
						|
                init_image = self._encode_vae_image(init_image, generator=generator)
 | 
						|
                mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
 | 
						|
                condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
 | 
						|
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, **condition_kwargs)[0]
 | 
						|
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
 | 
						|
        else:
 | 
						|
            image = latents
 | 
						|
            has_nsfw_concept = None
 | 
						|
 | 
						|
        if has_nsfw_concept is None:
 | 
						|
            do_denormalize = [True] * image.shape[0]
 | 
						|
        else:
 | 
						|
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
 | 
						|
 | 
						|
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
 | 
						|
 | 
						|
        # Offload last model to CPU
 | 
						|
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
 | 
						|
            self.final_offload_hook.offload()
 | 
						|
 | 
						|
        if not return_dict:
 | 
						|
            return (image, has_nsfw_concept)
 | 
						|
 | 
						|
        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
 | 
						|
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    @replace_example_docstring(EXAMPLE_DOC_STRING)
 | 
						|
    def __call__(
 | 
						|
        self,
 | 
						|
        promptA: Union[str, List[str]] = None,
 | 
						|
        promptB: Union[str, List[str]] = None,
 | 
						|
        image: Union[torch.Tensor, PIL.Image.Image] = None,
 | 
						|
        mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
 | 
						|
        control_image: Union[
 | 
						|
            torch.FloatTensor,
 | 
						|
            PIL.Image.Image,
 | 
						|
            np.ndarray,
 | 
						|
            List[torch.FloatTensor],
 | 
						|
            List[PIL.Image.Image],
 | 
						|
            List[np.ndarray],
 | 
						|
        ] = None,
 | 
						|
        height: Optional[int] = None,
 | 
						|
        width: Optional[int] = None,
 | 
						|
        strength: float = 1.0,
 | 
						|
        tradoff: float = 1.0,
 | 
						|
        tradoff_nag: float = 1.0,
 | 
						|
        num_inference_steps: int = 50,
 | 
						|
        guidance_scale: float = 7.5,
 | 
						|
        negative_promptA: Optional[Union[str, List[str]]] = None,
 | 
						|
        negative_promptB: Optional[Union[str, List[str]]] = None,
 | 
						|
        num_images_per_prompt: Optional[int] = 1,
 | 
						|
        eta: float = 0.0,
 | 
						|
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
 | 
						|
        latents: Optional[torch.FloatTensor] = None,
 | 
						|
        prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        output_type: Optional[str] = "pil",
 | 
						|
        return_dict: bool = True,
 | 
						|
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
 | 
						|
        callback_steps: int = 1,
 | 
						|
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
 | 
						|
        controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
 | 
						|
        guess_mode: bool = False,
 | 
						|
        control_guidance_start: Union[float, List[float]] = 0.0,
 | 
						|
        control_guidance_end: Union[float, List[float]] = 1.0,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Function invoked when calling the pipeline for generation.
 | 
						|
 | 
						|
        Args:
 | 
						|
            prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
 | 
						|
                instead.
 | 
						|
            image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
 | 
						|
                    `List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
 | 
						|
                The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
 | 
						|
                the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
 | 
						|
                also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
 | 
						|
                height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
 | 
						|
                specified in init, images must be passed as a list such that each element of the list can be correctly
 | 
						|
                batched for input to a single controlnet.
 | 
						|
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
 | 
						|
                The height in pixels of the generated image.
 | 
						|
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
 | 
						|
                The width in pixels of the generated image.
 | 
						|
            strength (`float`, *optional*, defaults to 1.):
 | 
						|
                Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
 | 
						|
                between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
 | 
						|
                `strength`. The number of denoising steps depends on the amount of noise initially added. When
 | 
						|
                `strength` is 1, added noise will be maximum and the denoising process will run for the full number of
 | 
						|
                iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
 | 
						|
                portion of the reference `image`.
 | 
						|
            num_inference_steps (`int`, *optional*, defaults to 50):
 | 
						|
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
 | 
						|
                expense of slower inference.
 | 
						|
            guidance_scale (`float`, *optional*, defaults to 7.5):
 | 
						|
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
 | 
						|
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
 | 
						|
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
 | 
						|
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
 | 
						|
                usually at the expense of lower image quality.
 | 
						|
            negative_prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
 | 
						|
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
 | 
						|
                less than `1`).
 | 
						|
            num_images_per_prompt (`int`, *optional*, defaults to 1):
 | 
						|
                The number of images to generate per prompt.
 | 
						|
            eta (`float`, *optional*, defaults to 0.0):
 | 
						|
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
 | 
						|
                [`schedulers.DDIMScheduler`], will be ignored for others.
 | 
						|
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
 | 
						|
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
 | 
						|
                to make generation deterministic.
 | 
						|
            latents (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
 | 
						|
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
 | 
						|
                tensor will ge generated by sampling using the supplied random `generator`.
 | 
						|
            prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
 | 
						|
                provided, text embeddings will be generated from `prompt` input argument.
 | 
						|
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
 | 
						|
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
 | 
						|
                argument.
 | 
						|
            output_type (`str`, *optional*, defaults to `"pil"`):
 | 
						|
                The output format of the generate image. Choose between
 | 
						|
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
 | 
						|
            return_dict (`bool`, *optional*, defaults to `True`):
 | 
						|
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
 | 
						|
                plain tuple.
 | 
						|
            callback (`Callable`, *optional*):
 | 
						|
                A function that will be called every `callback_steps` steps during inference. The function will be
 | 
						|
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
 | 
						|
            callback_steps (`int`, *optional*, defaults to 1):
 | 
						|
                The frequency at which the `callback` function will be called. If not specified, the callback will be
 | 
						|
                called at every step.
 | 
						|
            cross_attention_kwargs (`dict`, *optional*):
 | 
						|
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
 | 
						|
                `self.processor` in
 | 
						|
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
 | 
						|
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
 | 
						|
                The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
 | 
						|
                to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
 | 
						|
                corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
 | 
						|
                than for [`~StableDiffusionControlNetPipeline.__call__`].
 | 
						|
            guess_mode (`bool`, *optional*, defaults to `False`):
 | 
						|
                In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
 | 
						|
                you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
 | 
						|
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
 | 
						|
                The percentage of total steps at which the controlnet starts applying.
 | 
						|
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
 | 
						|
                The percentage of total steps at which the controlnet stops applying.
 | 
						|
 | 
						|
        Examples:
 | 
						|
 | 
						|
        Returns:
 | 
						|
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
 | 
						|
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
 | 
						|
            When returning a tuple, the first element is a list with the generated images, and the second element is a
 | 
						|
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
 | 
						|
            (nsfw) content, according to the `safety_checker`.
 | 
						|
        """
 | 
						|
        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
 | 
						|
 | 
						|
        # 0. Default height and width to unet
 | 
						|
        height, width = self._default_height_width(height, width, image)
 | 
						|
 | 
						|
        prompt = promptA
 | 
						|
        negative_prompt = negative_promptA
 | 
						|
        
 | 
						|
        # align format for control guidance
 | 
						|
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
 | 
						|
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
 | 
						|
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
 | 
						|
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
 | 
						|
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
 | 
						|
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
 | 
						|
            control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
 | 
						|
                control_guidance_end
 | 
						|
            ]
 | 
						|
 | 
						|
        # 1. Check inputs. Raise error if not correct
 | 
						|
        self.check_inputs(
 | 
						|
            prompt,
 | 
						|
            control_image,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            callback_steps,
 | 
						|
            negative_prompt,
 | 
						|
            prompt_embeds,
 | 
						|
            negative_prompt_embeds,
 | 
						|
            controlnet_conditioning_scale,
 | 
						|
            control_guidance_start,
 | 
						|
            control_guidance_end,
 | 
						|
        )
 | 
						|
 | 
						|
        # 2. Define call parameters
 | 
						|
        if prompt is not None and isinstance(prompt, str):
 | 
						|
            batch_size = 1
 | 
						|
        elif prompt is not None and isinstance(prompt, list):
 | 
						|
            batch_size = len(prompt)
 | 
						|
        else:
 | 
						|
            batch_size = prompt_embeds.shape[0]
 | 
						|
 | 
						|
        device = self._execution_device
 | 
						|
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
 | 
						|
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
 | 
						|
        # corresponds to doing no classifier free guidance.
 | 
						|
        do_classifier_free_guidance = guidance_scale > 1.0
 | 
						|
 | 
						|
        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
 | 
						|
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
 | 
						|
 | 
						|
        global_pool_conditions = (
 | 
						|
            controlnet.config.global_pool_conditions
 | 
						|
            if isinstance(controlnet, ControlNetModel)
 | 
						|
            else controlnet.nets[0].config.global_pool_conditions
 | 
						|
        )
 | 
						|
        guess_mode = guess_mode or global_pool_conditions
 | 
						|
 | 
						|
        # 3. Encode input prompt
 | 
						|
        text_encoder_lora_scale = (
 | 
						|
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
 | 
						|
        )
 | 
						|
        prompt_embeds = self._encode_prompt(
 | 
						|
            promptA,
 | 
						|
            promptB,
 | 
						|
            tradoff,
 | 
						|
            device,
 | 
						|
            num_images_per_prompt,
 | 
						|
            do_classifier_free_guidance,
 | 
						|
            negative_promptA,
 | 
						|
            negative_promptB,
 | 
						|
            tradoff_nag,
 | 
						|
            prompt_embeds=prompt_embeds,
 | 
						|
            negative_prompt_embeds=negative_prompt_embeds,
 | 
						|
            lora_scale=text_encoder_lora_scale,
 | 
						|
        )
 | 
						|
 | 
						|
        # 4. Prepare image
 | 
						|
        if isinstance(controlnet, ControlNetModel):
 | 
						|
            control_image = self.prepare_control_image(
 | 
						|
                image=control_image,
 | 
						|
                width=width,
 | 
						|
                height=height,
 | 
						|
                batch_size=batch_size * num_images_per_prompt,
 | 
						|
                num_images_per_prompt=num_images_per_prompt,
 | 
						|
                device=device,
 | 
						|
                dtype=controlnet.dtype,
 | 
						|
                do_classifier_free_guidance=do_classifier_free_guidance,
 | 
						|
                guess_mode=guess_mode,
 | 
						|
            )
 | 
						|
        elif isinstance(controlnet, MultiControlNetModel):
 | 
						|
            control_images = []
 | 
						|
 | 
						|
            for control_image_ in control_image:
 | 
						|
                control_image_ = self.prepare_control_image(
 | 
						|
                    image=control_image_,
 | 
						|
                    width=width,
 | 
						|
                    height=height,
 | 
						|
                    batch_size=batch_size * num_images_per_prompt,
 | 
						|
                    num_images_per_prompt=num_images_per_prompt,
 | 
						|
                    device=device,
 | 
						|
                    dtype=controlnet.dtype,
 | 
						|
                    do_classifier_free_guidance=do_classifier_free_guidance,
 | 
						|
                    guess_mode=guess_mode,
 | 
						|
                )
 | 
						|
 | 
						|
                control_images.append(control_image_)
 | 
						|
 | 
						|
            control_image = control_images
 | 
						|
        else:
 | 
						|
            assert False
 | 
						|
 | 
						|
        # 4. Preprocess mask and image - resizes image and mask w.r.t height and width
 | 
						|
        mask, masked_image, init_image = prepare_mask_and_masked_image(
 | 
						|
            image, mask_image, height, width, return_image=True
 | 
						|
        )
 | 
						|
 | 
						|
        # 5. Prepare timesteps
 | 
						|
        self.scheduler.set_timesteps(num_inference_steps, device=device)
 | 
						|
        timesteps, num_inference_steps = self.get_timesteps(
 | 
						|
            num_inference_steps=num_inference_steps, strength=strength, device=device
 | 
						|
        )
 | 
						|
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
 | 
						|
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
 | 
						|
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
 | 
						|
        is_strength_max = strength == 1.0
 | 
						|
 | 
						|
        # 6. Prepare latent variables
 | 
						|
        num_channels_latents = self.vae.config.latent_channels
 | 
						|
        num_channels_unet = self.unet.config.in_channels
 | 
						|
        return_image_latents = num_channels_unet == 4
 | 
						|
        latents_outputs = self.prepare_latents(
 | 
						|
            batch_size * num_images_per_prompt,
 | 
						|
            num_channels_latents,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            prompt_embeds.dtype,
 | 
						|
            device,
 | 
						|
            generator,
 | 
						|
            latents,
 | 
						|
            image=init_image,
 | 
						|
            timestep=latent_timestep,
 | 
						|
            is_strength_max=is_strength_max,
 | 
						|
            return_noise=True,
 | 
						|
            return_image_latents=return_image_latents,
 | 
						|
        )
 | 
						|
 | 
						|
        if return_image_latents:
 | 
						|
            latents, noise, image_latents = latents_outputs
 | 
						|
        else:
 | 
						|
            latents, noise = latents_outputs
 | 
						|
 | 
						|
        # 7. Prepare mask latent variables
 | 
						|
        mask, masked_image_latents = self.prepare_mask_latents(
 | 
						|
            mask,
 | 
						|
            masked_image,
 | 
						|
            batch_size * num_images_per_prompt,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            prompt_embeds.dtype,
 | 
						|
            device,
 | 
						|
            generator,
 | 
						|
            do_classifier_free_guidance,
 | 
						|
        )
 | 
						|
 | 
						|
        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
 | 
						|
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
 | 
						|
 | 
						|
        # 7.1 Create tensor stating which controlnets to keep
 | 
						|
        controlnet_keep = []
 | 
						|
        for i in range(len(timesteps)):
 | 
						|
            keeps = [
 | 
						|
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
 | 
						|
                for s, e in zip(control_guidance_start, control_guidance_end)
 | 
						|
            ]
 | 
						|
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
 | 
						|
 | 
						|
        # 8. Denoising loop
 | 
						|
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
 | 
						|
        with self.progress_bar(total=num_inference_steps) as progress_bar:
 | 
						|
            for i, t in enumerate(timesteps):
 | 
						|
                # expand the latents if we are doing classifier free guidance
 | 
						|
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
 | 
						|
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
 | 
						|
 | 
						|
                # controlnet(s) inference
 | 
						|
                if guess_mode and do_classifier_free_guidance:
 | 
						|
                    # Infer ControlNet only for the conditional batch.
 | 
						|
                    control_model_input = latents
 | 
						|
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
 | 
						|
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
 | 
						|
                else:
 | 
						|
                    control_model_input = latent_model_input
 | 
						|
                    controlnet_prompt_embeds = prompt_embeds
 | 
						|
 | 
						|
                if isinstance(controlnet_keep[i], list):
 | 
						|
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
 | 
						|
                else:
 | 
						|
                    controlnet_cond_scale = controlnet_conditioning_scale
 | 
						|
                    if isinstance(controlnet_cond_scale, list):
 | 
						|
                        controlnet_cond_scale = controlnet_cond_scale[0]
 | 
						|
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
 | 
						|
 | 
						|
                down_block_res_samples, mid_block_res_sample = self.controlnet(
 | 
						|
                    control_model_input,
 | 
						|
                    t,
 | 
						|
                    encoder_hidden_states=controlnet_prompt_embeds,
 | 
						|
                    controlnet_cond=control_image,
 | 
						|
                    conditioning_scale=cond_scale,
 | 
						|
                    guess_mode=guess_mode,
 | 
						|
                    return_dict=False,
 | 
						|
                )
 | 
						|
 | 
						|
                if guess_mode and do_classifier_free_guidance:
 | 
						|
                    # Infered ControlNet only for the conditional batch.
 | 
						|
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
 | 
						|
                    # add 0 to the unconditional batch to keep it unchanged.
 | 
						|
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 | 
						|
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
 | 
						|
 | 
						|
                # predict the noise residual
 | 
						|
                if num_channels_unet == 9:
 | 
						|
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
 | 
						|
 | 
						|
                noise_pred = self.unet(
 | 
						|
                    latent_model_input,
 | 
						|
                    t,
 | 
						|
                    encoder_hidden_states=prompt_embeds,
 | 
						|
                    cross_attention_kwargs=cross_attention_kwargs,
 | 
						|
                    down_block_additional_residuals=down_block_res_samples,
 | 
						|
                    mid_block_additional_residual=mid_block_res_sample,
 | 
						|
                    return_dict=False,
 | 
						|
                )[0]
 | 
						|
 | 
						|
                # perform guidance
 | 
						|
                if do_classifier_free_guidance:
 | 
						|
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
 | 
						|
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
 | 
						|
 | 
						|
                # compute the previous noisy sample x_t -> x_t-1
 | 
						|
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
 | 
						|
 | 
						|
                if num_channels_unet == 4:
 | 
						|
                    init_latents_proper = image_latents[:1]
 | 
						|
                    init_mask = mask[:1]
 | 
						|
 | 
						|
                    if i < len(timesteps) - 1:
 | 
						|
                        noise_timestep = timesteps[i + 1]
 | 
						|
                        init_latents_proper = self.scheduler.add_noise(
 | 
						|
                            init_latents_proper, noise, torch.tensor([noise_timestep])
 | 
						|
                        )
 | 
						|
 | 
						|
                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents
 | 
						|
 | 
						|
                # call the callback, if provided
 | 
						|
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
 | 
						|
                    progress_bar.update()
 | 
						|
                    if callback is not None and i % callback_steps == 0:
 | 
						|
                        callback(i, t, latents)
 | 
						|
 | 
						|
        # If we do sequential model offloading, let's offload unet and controlnet
 | 
						|
        # manually for max memory savings
 | 
						|
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
 | 
						|
            self.unet.to("cpu")
 | 
						|
            self.controlnet.to("cpu")
 | 
						|
            torch.cuda.empty_cache()
 | 
						|
 | 
						|
        if not output_type == "latent":
 | 
						|
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
 | 
						|
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
 | 
						|
        else:
 | 
						|
            image = latents
 | 
						|
            has_nsfw_concept = None
 | 
						|
 | 
						|
        if has_nsfw_concept is None:
 | 
						|
            do_denormalize = [True] * image.shape[0]
 | 
						|
        else:
 | 
						|
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
 | 
						|
 | 
						|
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
 | 
						|
 | 
						|
        # Offload last model to CPU
 | 
						|
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
 | 
						|
            self.final_offload_hook.offload()
 | 
						|
 | 
						|
        if not return_dict:
 | 
						|
            return (image, has_nsfw_concept)
 | 
						|
 | 
						|
        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
 |