111 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
import os
 | 
						|
 | 
						|
import PIL.Image
 | 
						|
import cv2
 | 
						|
import torch
 | 
						|
from diffusers import AutoencoderKL
 | 
						|
from loguru import logger
 | 
						|
 | 
						|
from iopaint.schema import InpaintRequest, ModelType
 | 
						|
 | 
						|
from .base import DiffusionInpaintModel
 | 
						|
from .helper.cpu_text_encoder import CPUTextEncoderWrapper
 | 
						|
from .original_sd_configs import get_config_files
 | 
						|
from .utils import (
 | 
						|
    handle_from_pretrained_exceptions,
 | 
						|
    get_torch_dtype,
 | 
						|
    enable_low_mem,
 | 
						|
    is_local_files_only,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
class SDXL(DiffusionInpaintModel):
 | 
						|
    name = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
 | 
						|
    pad_mod = 8
 | 
						|
    min_size = 512
 | 
						|
    lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
 | 
						|
    model_id_or_path = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
 | 
						|
 | 
						|
    def init_model(self, device: torch.device, **kwargs):
 | 
						|
        from diffusers.pipelines import StableDiffusionXLInpaintPipeline
 | 
						|
 | 
						|
        use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
 | 
						|
 | 
						|
        if self.model_info.model_type == ModelType.DIFFUSERS_SDXL:
 | 
						|
            num_in_channels = 4
 | 
						|
        else:
 | 
						|
            num_in_channels = 9
 | 
						|
 | 
						|
        if os.path.isfile(self.model_id_or_path):
 | 
						|
            self.model = StableDiffusionXLInpaintPipeline.from_single_file(
 | 
						|
                self.model_id_or_path,
 | 
						|
                torch_dtype=torch_dtype,
 | 
						|
                num_in_channels=num_in_channels,
 | 
						|
                load_safety_checker=False,
 | 
						|
                config_files=get_config_files()
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            model_kwargs = {
 | 
						|
                **kwargs.get("pipe_components", {}),
 | 
						|
                "local_files_only": is_local_files_only(**kwargs),
 | 
						|
            }
 | 
						|
            if "vae" not in model_kwargs:
 | 
						|
                vae = AutoencoderKL.from_pretrained(
 | 
						|
                    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
 | 
						|
                )
 | 
						|
                model_kwargs["vae"] = vae
 | 
						|
            self.model = handle_from_pretrained_exceptions(
 | 
						|
                StableDiffusionXLInpaintPipeline.from_pretrained,
 | 
						|
                pretrained_model_name_or_path=self.model_id_or_path,
 | 
						|
                torch_dtype=torch_dtype,
 | 
						|
                variant="fp16",
 | 
						|
                **model_kwargs
 | 
						|
            )
 | 
						|
 | 
						|
        enable_low_mem(self.model, kwargs.get("low_mem", False))
 | 
						|
 | 
						|
        if kwargs.get("cpu_offload", False) and use_gpu:
 | 
						|
            logger.info("Enable sequential cpu offload")
 | 
						|
            self.model.enable_sequential_cpu_offload(gpu_id=0)
 | 
						|
        else:
 | 
						|
            self.model = self.model.to(device)
 | 
						|
            if kwargs["sd_cpu_textencoder"]:
 | 
						|
                logger.info("Run Stable Diffusion TextEncoder on CPU")
 | 
						|
                self.model.text_encoder = CPUTextEncoderWrapper(
 | 
						|
                    self.model.text_encoder, torch_dtype
 | 
						|
                )
 | 
						|
                self.model.text_encoder_2 = CPUTextEncoderWrapper(
 | 
						|
                    self.model.text_encoder_2, torch_dtype
 | 
						|
                )
 | 
						|
 | 
						|
        self.callback = kwargs.pop("callback", None)
 | 
						|
 | 
						|
    def forward(self, image, mask, config: InpaintRequest):
 | 
						|
        """Input image and output image have same size
 | 
						|
        image: [H, W, C] RGB
 | 
						|
        mask: [H, W, 1] 255 means area to repaint
 | 
						|
        return: BGR IMAGE
 | 
						|
        """
 | 
						|
        self.set_scheduler(config)
 | 
						|
 | 
						|
        img_h, img_w = image.shape[:2]
 | 
						|
 | 
						|
        output = self.model(
 | 
						|
            image=PIL.Image.fromarray(image),
 | 
						|
            prompt=config.prompt,
 | 
						|
            negative_prompt=config.negative_prompt,
 | 
						|
            mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
 | 
						|
            num_inference_steps=config.sd_steps,
 | 
						|
            strength=0.999 if config.sd_strength == 1.0 else config.sd_strength,
 | 
						|
            guidance_scale=config.sd_guidance_scale,
 | 
						|
            output_type="np",
 | 
						|
            callback_on_step_end=self.callback,
 | 
						|
            height=img_h,
 | 
						|
            width=img_w,
 | 
						|
            generator=torch.manual_seed(config.sd_seed),
 | 
						|
        ).images[0]
 | 
						|
 | 
						|
        output = (output * 255).round().astype("uint8")
 | 
						|
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
 | 
						|
        return output
 |