161 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
#
 | 
						|
# The Python Imaging Library.
 | 
						|
# $Id$
 | 
						|
#
 | 
						|
# global image statistics
 | 
						|
#
 | 
						|
# History:
 | 
						|
# 1996-04-05 fl   Created
 | 
						|
# 1997-05-21 fl   Added mask; added rms, var, stddev attributes
 | 
						|
# 1997-08-05 fl   Added median
 | 
						|
# 1998-07-05 hk   Fixed integer overflow error
 | 
						|
#
 | 
						|
# Notes:
 | 
						|
# This class shows how to implement delayed evaluation of attributes.
 | 
						|
# To get a certain value, simply access the corresponding attribute.
 | 
						|
# The __getattr__ dispatcher takes care of the rest.
 | 
						|
#
 | 
						|
# Copyright (c) Secret Labs AB 1997.
 | 
						|
# Copyright (c) Fredrik Lundh 1996-97.
 | 
						|
#
 | 
						|
# See the README file for information on usage and redistribution.
 | 
						|
#
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import math
 | 
						|
from functools import cached_property
 | 
						|
 | 
						|
from . import Image
 | 
						|
 | 
						|
 | 
						|
class Stat:
 | 
						|
    def __init__(
 | 
						|
        self, image_or_list: Image.Image | list[int], mask: Image.Image | None = None
 | 
						|
    ) -> None:
 | 
						|
        """
 | 
						|
        Calculate statistics for the given image. If a mask is included,
 | 
						|
        only the regions covered by that mask are included in the
 | 
						|
        statistics. You can also pass in a previously calculated histogram.
 | 
						|
 | 
						|
        :param image: A PIL image, or a precalculated histogram.
 | 
						|
 | 
						|
            .. note::
 | 
						|
 | 
						|
                For a PIL image, calculations rely on the
 | 
						|
                :py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are
 | 
						|
                grouped into 256 bins, even if the image has more than 8 bits per
 | 
						|
                channel. So ``I`` and ``F`` mode images have a maximum ``mean``,
 | 
						|
                ``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum
 | 
						|
                of more than 255.
 | 
						|
 | 
						|
        :param mask: An optional mask.
 | 
						|
        """
 | 
						|
        if isinstance(image_or_list, Image.Image):
 | 
						|
            self.h = image_or_list.histogram(mask)
 | 
						|
        elif isinstance(image_or_list, list):
 | 
						|
            self.h = image_or_list
 | 
						|
        else:
 | 
						|
            msg = "first argument must be image or list"  # type: ignore[unreachable]
 | 
						|
            raise TypeError(msg)
 | 
						|
        self.bands = list(range(len(self.h) // 256))
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def extrema(self) -> list[tuple[int, int]]:
 | 
						|
        """
 | 
						|
        Min/max values for each band in the image.
 | 
						|
 | 
						|
        .. note::
 | 
						|
            This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and
 | 
						|
            simply returns the low and high bins used. This is correct for
 | 
						|
            images with 8 bits per channel, but fails for other modes such as
 | 
						|
            ``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to
 | 
						|
            return per-band extrema for the image. This is more correct and
 | 
						|
            efficient because, for non-8-bit modes, the histogram method uses
 | 
						|
            :py:meth:`~PIL.Image.Image.getextrema` to determine the bins used.
 | 
						|
        """
 | 
						|
 | 
						|
        def minmax(histogram: list[int]) -> tuple[int, int]:
 | 
						|
            res_min, res_max = 255, 0
 | 
						|
            for i in range(256):
 | 
						|
                if histogram[i]:
 | 
						|
                    res_min = i
 | 
						|
                    break
 | 
						|
            for i in range(255, -1, -1):
 | 
						|
                if histogram[i]:
 | 
						|
                    res_max = i
 | 
						|
                    break
 | 
						|
            return res_min, res_max
 | 
						|
 | 
						|
        return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)]
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def count(self) -> list[int]:
 | 
						|
        """Total number of pixels for each band in the image."""
 | 
						|
        return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)]
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def sum(self) -> list[float]:
 | 
						|
        """Sum of all pixels for each band in the image."""
 | 
						|
 | 
						|
        v = []
 | 
						|
        for i in range(0, len(self.h), 256):
 | 
						|
            layer_sum = 0.0
 | 
						|
            for j in range(256):
 | 
						|
                layer_sum += j * self.h[i + j]
 | 
						|
            v.append(layer_sum)
 | 
						|
        return v
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def sum2(self) -> list[float]:
 | 
						|
        """Squared sum of all pixels for each band in the image."""
 | 
						|
 | 
						|
        v = []
 | 
						|
        for i in range(0, len(self.h), 256):
 | 
						|
            sum2 = 0.0
 | 
						|
            for j in range(256):
 | 
						|
                sum2 += (j**2) * float(self.h[i + j])
 | 
						|
            v.append(sum2)
 | 
						|
        return v
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def mean(self) -> list[float]:
 | 
						|
        """Average (arithmetic mean) pixel level for each band in the image."""
 | 
						|
        return [self.sum[i] / self.count[i] for i in self.bands]
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def median(self) -> list[int]:
 | 
						|
        """Median pixel level for each band in the image."""
 | 
						|
 | 
						|
        v = []
 | 
						|
        for i in self.bands:
 | 
						|
            s = 0
 | 
						|
            half = self.count[i] // 2
 | 
						|
            b = i * 256
 | 
						|
            for j in range(256):
 | 
						|
                s = s + self.h[b + j]
 | 
						|
                if s > half:
 | 
						|
                    break
 | 
						|
            v.append(j)
 | 
						|
        return v
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def rms(self) -> list[float]:
 | 
						|
        """RMS (root-mean-square) for each band in the image."""
 | 
						|
        return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands]
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def var(self) -> list[float]:
 | 
						|
        """Variance for each band in the image."""
 | 
						|
        return [
 | 
						|
            (self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i]
 | 
						|
            for i in self.bands
 | 
						|
        ]
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def stddev(self) -> list[float]:
 | 
						|
        """Standard deviation for each band in the image."""
 | 
						|
        return [math.sqrt(self.var[i]) for i in self.bands]
 | 
						|
 | 
						|
 | 
						|
Global = Stat  # compatibility
 |